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• Generate coordinates as text


• Improves spatial awareness of QA

Query: Describe [x1,y1,x2,y2] 
location in image. 


Ours: A blue plaid blanket 
behind a teddy bear.

Query: Which side of the 
potted plant is the stove? 


LLaVa: The stove is on the 
left side of potted plant.


Ours: The stove is on the 
right side of potted plant.
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(Bridge Modality Gap)

LLaMa LLM

Caption: Where is the dog 
located in this image?

all tokens

Tokenizer

Target: The dog is located at 
(x1, y1, x2, y2) bounding box.

100K image-conversation pairs
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2. Motivation
Revisit Proposed Task: Spatial Coordinates as Text for QnA

There is a cow that is lying down on a grassy 
hillside, surrounded by other cows and trees.

There is a dog that is standing next to a cake on 
a table, looking at the cake with a candle on it.

There is a person that is a young girl, sitting in 
a suitcase filled with clothes and other items.

There is a cup that is a tall glass, 
placed on a table next to a pizza.

There is a backpack that is green and is positioned on the 
back of a person, likely a man, who is walking down the street.

There is a dog that is a brown and white dog, and it is 
standing next to a bottle of water, possibly drinking from it.

There is a cow that is lying down on a grassy 
hillside, surrounded by other cows and trees.

There is a dog that is standing next to a cake on 
a table, looking at the cake with a candle on it.

There is a person that is a young girl, sitting in 
a suitcase filled with clothes and other items.

There is a cup that is a tall glass, 
placed on a table next to a pizza.

There is a backpack that is green and is positioned on the 
back of a person, likely a man, who is walking down the street.

There is a dog that is a brown and white dog, and it is 
standing next to a bottle of water, possibly drinking from it.

Prompt: Describe the region 
described by (x1,y1, x2, y2) 

bounding box.

Prompt: Where is the 
{category} object located in 

the image?
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B. Integer Valued Binning (across image dimensions) 
e.g. ROUND ([ 0.019, 0.114, 0.920, 0.786 ] ) 
       = [ 4,  26, 206, 176 ] for  = 224 

C. Deviation from Image-Grid based Anchors 
e.g. [ 0, 4, 3, 11, 6, 0]
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nb

512

512

(x1,y1)

(x2,y2)



3.2. Instruction Fine-Tuning Objectives

• Three distinct train objectives for 
instruction fine-tune stage  



3.2. Instruction Fine-Tuning Objectives

• Three distinct train objectives for 
instruction fine-tune stage  
 

• LocPred 
    generate coordinate outputs


• NegPred 
    avoid hallucination


• RevLoc 
    process coordinate inputs 



3.2. Instruction Fine-Tuning Objectives

• Three distinct train objectives for 
instruction fine-tune stage  
 

• LocPred 
    generate coordinate outputs


• NegPred 
    avoid hallucination


• RevLoc 
    process coordinate inputs 

PROMPT: “Where is the object described {category} 
located in image in terms of (x1,y1,x2,y2) bbox?” 

LocPred TARGET: “It is located at {location} bbox.” 
NegPred TARGET: “There is no such object in the image.”

PROMPT: “Describe the object located at {loc} bbox?” 
RevLoc TARGET: “There is a {category/description}.”



3.2. Instruction Fine-Tuning Objectives

• Three distinct train objectives for 
instruction fine-tune stage  
 

• LocPred 
    generate coordinate outputs


• NegPred 
    avoid hallucination


• RevLoc 
    process coordinate inputs 

PROMPT: “Where is the object described {category} 
located in image in terms of (x1,y1,x2,y2) bbox?” 

LocPred TARGET: “It is located at {location} bbox.” 
NegPred TARGET: “There is no such object in the image.”

PROMPT: “Describe the object located at {loc} bbox?” 
RevLoc TARGET: “There is a {category/description}.”

Train with these objectives 
for preliminary model
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3.3. Pseudo Data
Generate dataset: Object Location + Description Pairs

• Inputs: Images with object bounding box annotations


• GT or Object-Detector


• V-LLM based object description


• Contextual descriptions (describe object relative to 
surroundings)


• Use images with single instance of object category 
(crop / filter) 

PROMPT: “Describe the {category} 
in this image using one short 
sentence, referring to its visual 
features and spatial position relative 
to other objects in image.”



Resulting Model termed “LocVLM” 

• Pre-training stage similar to LLaVA


• Fine-tuning using our proposed objectives and generated data 
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4.1. Improved VQA
• Toy Exp: “Which side of image is object?”


• High accuracy predicting left vs right 
correctly


• High accuracy predicting top vs bottom 
correctly


• Image and Video (frame-average) VQA 


• Improves over baselines 


• Reduces object hallucination  
(including for unseen categories)



4.1. Improved VQA
Video Domain: adding our learned LLM to a video baseline
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4.2. Novel Skills
Contextual Description of Regions 

There is a cow that is lying down on a grassy 
hillside, surrounded by other cows and trees.

There is a dog that is standing next to a cake on 
a table, looking at the cake with a candle on it.

There is a person that is a young girl, sitting in 
a suitcase filled with clothes and other items.

There is a cup that is a tall glass, 
placed on a table next to a pizza.

There is a backpack that is green and is positioned on the 
back of a person, likely a man, who is walking down the street.

There is a dog that is a brown and white dog, and it is 
standing next to a bottle of water, possibly drinking from it.

Prompt: Describe the region described by (x1,y1, x2, y2) bounding box.

Region Description Task: Evaluation for the reverse of 
referring object detection. Given a bounding box, generate 
a region description using contextual information as well. 
The METEOR scores (text similarity) is calculated against 
GT human-written captions for each object region.   



Contemporary Works
• Several recent works explore similar 

ideas for VQA


• Overlap but also some distinctions

[8] Chen, Ke et al. “Shikra: Unleashing Multimodal LLM's Referential Dialogue Magic.” ArXiv abs/2306.15195 (2023) 
[66] You, Haoxuan et al. “Ferret: Refer and Ground Anything Anywhere at Any Granularity.” ICLR 2024 
[45] Peng, Zhiliang et al. “Kosmos-2: Grounding Multimodal Large Language Models to the World.” ICLR 2024



5. Discussion

• Can we modify visual LLMs to understand image-space coordinates as text?  
    Yes! Performs on par with alternate approaches  

• Does this improve general VQA?  
    Yes. Better spatial awareness (on selected settings) 
    + Reduced object hallucination.  

• Any new abilities of these models? 
    Contextual descriptions for object regions 


