
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. XX, MONTH 201X 1

Combined Static and Motion Features for
Deep-Networks Based Activity Recognition in

Videos
Sameera Ramasinghe, Member, IEEE, Jathushan Rajasegaran, Student Member, IEEE, Vinoj Jayasundara, Student

Member, IEEE, Kanchana Ranasinghe, Student Member, IEEE, Ranga Rodrigo, Member, IEEE,
and Ajith A. Pasqual, Member, IEEE

Abstract—Activity recognition in videos in a deep-learning
setting—or otherwise—uses both static and pre-computed motion
components. The method of combining the two components,
whilst keeping the burden on the deep network less, still remains
uninvestigated. Moreover, it is not clear what the level of
contribution of individual components is, and how to control
the contribution. In this work, we use a combination of CNN-
generated static features and motion features in the form of
motion tubes. We propose three schemas for combining static
and motion components: based on a variance ratio, principal
components, and Cholesky decomposition. The Cholesky decom-
position based method allows the control of contributions. The
ratio given by variance analysis of static and motion features
match well with the experimental optimal ratio used in the
Cholesky decomposition based method. The resulting activity
recognition system is better or on par with existing state-of-the-
art when tested with three popular datasets. The findings also
enable us to characterize a dataset with respect to its richness
in motion information.

Index Terms—Activity recognition, Fusing features, Convo-
lutional Neural Networks (CNN), Recurrent Neural Networks
(RNN), Long Short-Term Memory (LSTM).

I. INTRODUCTION

AUTOMATIC activity recognition in videos is an intensely
researched area in computer vision due to its wide range

of real-world applications in sports, health care, surveillance,
robot vision, and human-computer interaction. Furthermore,
the rapid growth of digital video data demands automatic
classification and indexing of videos. Despite the increased
interest, the state-of-the-art systems are still far from human-
level performance, in contrast to the success in image classifi-
cation [1], [2]. This is partially due to the complex intra-class
variations in videos, some obvious causes being the view point,
background clutter, high dimensionality of data, lack of large
datasets, and low resolution.

Despite these reasons more-or-less affecting automatic im-
age classification, it has been quite successful in recent years,

S. Ramasinghe, J. Rajasegaran, V. Jayasundara, K. Ranasinghe, R. Rodrigo,
and A. Pasqual were with the Department of Electronic and Telecommunica-
tion Engineering, the University of Moratuwa, 10400, Sri Lanka. E-mail: sam-
ramasinghe@gmail.com, brjathu@gmail.com, vinojjayasundara@gmail.com,
kahnchana@gmail.com, ranga@uom.lk, pasqual@ent.mrt.ac.lk

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the author. Digital Object Identier
XX.XXXX/TCSVT.2017.XXXXXXX

largely owing to the rise of deep learning techniques. This is
not the case in video classification, although deep learning is
starting to be widely applied. Therefore, it is worthwhile inves-
tigating what is holding back video classification. In this study,
we address three key areas: exploiting the underlying dynamics
of sub-events for high-level action recognition, crafting self-
explanatory, independent static and motion features—in which,
motion features should capture micro-level actions of each
actor or object independently, such as arm or leg movements—
, and optimum fusing of static and motion features for better
accuracy.

A complex activity typically comprises several sub activi-
ties. The existing approaches try to classify a video treating it
as a single, high-level activity [3]–[6]. As the action becomes
complex, the behavior and the temporal evolution of its under-
lying sub-events become complicated. For example, cooking
may involve sub-events: cutting, turning on the cooker, and
stirring. It may not always preserve this same lower order for
the same action class. Instead, they may contain a higher-order
temporal relationship among them. For example, turning on
the cooker and cutting may appear in reverse order in another
video in the same class. Therefore, this temporal pattern of
sub-events is not easy to capture through a simple time series
analysis. These patterns can only be identified by observing
many examples, using a system which has an infinite dynamic
response. Therefore, it is important to model this higher-order
temporal progression, and capture temporal dynamics of these
sub-events for better recognition of complex activities.

In contrast to image classification, the information contained
in videos are not in a single domain. Both the motion patterns
of the actors and objects, as well as the static information—
such as, background and still objects that the actors interact
with—are important for determining an action. For example,
the body movements of a group of people fighting may
closely relate to the body movements of a sports event, e.g.,
wrestling. In such a case, it is tough to distinguish between
the two activities solely by looking at the motion patterns.
Inspecting the background setting and objects is crucial in
such a scenario. Therefore, it is necessary to engineer powerful
features from both motion and static domains. In addition,
these features must be complementary, and one feature domain
should not influence the other domain. In other words, they

0000–0000/00$00.00 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

ar
X

iv
:1

81
0.

06
82

7v
1

 [
cs

.C
V

]
 1

6
O

ct
 2

01
8

http://ieeexplore.ieee.org
http://www.ieee.org/publications

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. XX, MONTH 201X 2

should be self-explanatory, and mutually exclusive, as much as
possible. Also, these motion features should be able to capture
activities of each actor independently. If so, the distributional
properties of these actions, over short and long durations, can
be used to identify high level actions. In the proposed method,
we craft static and motion features to have this property.

Furthermore, how to optimally combine or fuse these mo-
tion and static descriptors remains a challenge for three key
reasons: both static and motion information provide cues
regarding an action in a video, the contribution ratio from
each domain affects the final recognition accuracy, and opti-
mum contribution ratio of static and motion information may
depend on the richness of motion information in the video.
The combined descriptor should contain the essence of both
domains, and should not have a negative influence on each
other. Recently, there has been attempts to answer this question
[6], [5]. However, these existing methodologies lack the insight
in to how much this ratio affects the final accuracy, and has no
control over this ratio. One major requirement of the fusion
method is to have a high-level intuitive interpretation on how
much contribution each domain provides to the final descriptor,
and can control level of contribution. This ability makes it
possible to deeply investigate the optimum contribution of
each domain for a better accuracy. In this study, we investigate
this factor extensively.

In this work, we focus on video activity recognition using
both static and motion information. We address three problem
areas: crafting mutually exclusive static and motion features,
optimal fusion of the crafted features, and modeling temporal
dynamics of sub-activities for high-level activity recognition.
In order to examine the temporal evolution of sub-activities
subsequently, we create video segments with constant over-
lapping durations. Afterwards, we combine static and motion
descriptors to represent each segment. We propose motion
tubes, a dense trajectory [3] based tracking mechanism, to
identify and track candidate moving areas separately. This
enables independent modeling of the activities in each moving
area. In order to capture motion patterns, we use histogram
oriented optic flows (HOOF) [7] inside motion tubes. Then we
apply a bag-of-words (BoW) method on the generated features
to capture the distributional properties of micro actions, such
as body movements, and create high level, discriminative
motion features.

Inspired by the power of object recognition of convolutional
neural networks (CNNs), we create a seven-layer deep CNN,
and pre-train it on the popular ImageNet dataset [8]. After-
wards, we use this trained CNN to create deep features, to
synthesize static descriptors. Then, using a computationally
efficient, yet powerful, mathematical model, we fuse static and
motion feature vectors. We propose three such novel methods
in this paper: based on Cholesky decomposition, variance
ratio of motion and static vectors, and principal components
analysis (PCA). The Cholesky decomposition based model
provides the ability to precisely control the contribution of
static and motion domains to the final fused descriptor. Using
this intuition, we investigate the optimum contribution of
each domain, experimentally. The variance ratio based method
also provides us this ability, and additionally, lets us obtain

the optimum contribution ratio mathematically. We show that
the optimum contribution ratio obtained experimentally using
the Cholesky based method, matches with the ratio obtained
mathematically from the variance based method. Furthermore,
we show that this optimum contribution may vary depending
on the richness of motion information, and affects the final
accuracy significantly.

In order to model the temporal progression of sub events,
we feed the fused vectors to a long short-term memory
(LSTM) network. The LSTM network discovers the under-
lying temporal patterns of the sub events, and classifies high
level actions. We feed the same vectors to a classifier which
does not capture temporal dynamics to show that modeling
temporal progression of sub events indeed contribute for a
better accuracy. We carry out our experiments on the three
popular action data sets, UCF-11 [9], Hollywood2 [10], and
HMDB51 [11].

The key contributions of this paper are as follows:
• We propose an end-to-end system, which extracts both

static and motion information, fuses, and models the
temporal evolution of sub-events, and does action classi-
fication.

• We propose a novel, moving actor and object tracking
mechanism, called motion tubes, which enables the sys-
tem to track each actor or object independently, and
model the motion patterns individually over a long time
period. This allows the system to model actions occurring
in a video in micro level, and use these learned dynamics
at a high level afterwards.

• We propose three novel, simple, and efficient mathe-
matical models for fusing two vectors, in two different
domains, based on Cholesky transformation, variance
ratio of motion and static vectors, and PCA. The first two
methods provide the ability to govern the contribution
of each domain for the fused vector precisely and find
the optimum contribution of the two domains, mathe-
matically or empirically. Using this advantage, we prove
that static and motion information are complementary and
vital for activity recognition through experiments.

• We prove that the final recognition accuracy depends on
the ratio of contribution of static and motion domains.
Also, we show that this optimum ratio depends on the
richness of motion information in the video. Hence, it
is beneficial to exploit this optimum ratio for a better
accuracy.

• We model the underlying temporal evolution of sub-
events for complex activity recognition using an LSTM
network. We experimentally prove that capturing these
dynamics indeed benefits the final accuracy.

With the proposed techniques we outperform the existing
best results for the datasets UCF-11 [9] and Hollywood2 [10],
and are on par for the dataset HMDB51 [11].

II. RELATED WORK

There has not been many approaches in activity recognition,
which highlight the importance of exclusively engineered
static and motion features. Most of the work rely on gen-
erating spatio-temporal interest regions, such as, action tubes

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. XX, MONTH 201X 3

[12], tubelets [13], dense trajectory based methods [14], [15],
spatio-temporal extensions of spatial pyramid pooling [16],
or spatio-temporal low-level features [3], [17]–[21]. Action
tubes [12] is quite similar to our motion tubes, but our motion
candidate regions are chosen based on more powerful dense
trajectories [3] instead of raw optic flows. Also, we employ a
tracking mechanism of each moving area through motion tubes
isolating actions of each actor throughout the video. This is
an extension of the human-actor tracking presented by Wang
[4] . Our static interest regions are independent from motion,
unlike in Gkioxari et al. [12], where can extract background
scenery information using CNNs, for action recognition. A
common attribute of these methods is that motion density
is the dominant factor for identifying candidate regions. In
contrast, we treat motion and static features as two independent
domains, and eliminate the dominance factor.

A few attempts has recently been made on exclusive crafting
and late fusion of motion and static features. Simonyan et
al. [5] first decomposes a video in to spatial and temporal
components based on RGB and optical flow frames. Then they
apply two deep CNNs on these two components separately to
extract spatial and temporal information. Each network op-
erates mutually exclusively and performs action classification
independently. Afterwards, softmax scores are coalesced by
late fusion.

Work done in Feichtenhofer et al. [22] is also similar.
Instead of late fusion, they fuse the two domains in a convolu-
tional layer. Both these approaches rely explicitly on automatic
feature generation in increasingly abstract layers. While this
has provided promising results on static feature generation, we
argue that motion patterns can be better extracted by hand-
crafted features. This is because temporal dynamics extend
to a longer motion duration unlike spatial variations. It is
not possible to capture and discriminate motion patterns in
to classes by a system which has a smaller temporal support.
There are models which employ 3D convolution [23], [24],
which extends the traditional CNNs into temporal domain.
Ramasinghe et al. [6] apply CNNs on optic flows, and Kim et
al. [25] on low level hand-crafted inputs (spatio-temporal outer
boundaries volumes), to extract motion features. However,
even by generating hierarchical features on top of pixel level
features, it is not easy to discriminate motion classes as the
duration extent is short. Also, tracking and modeling actions of
each actor separately in longer time durations is not possible
with these approaches. Our motion features, on the other hand,
are capable of capturing motion patterns in longer temporal
durations. Furthermore, with the aid of motion tubes our
system tracks and models the activities of each moving area
separately.

In the case of work done by Wang et al. [26], their use
of IDT features as motion descriptors and CNN features as
static descriptors serves as a baseline for our work. Consid-
ering their experiments and observations, we focus solely on
HOOF creation as opposed to multiple different descriptors for
extracting the motion information. In addition, we look into
the extraction of micro actions through our work. Also with
regards to the approach for static and motion vector fusion,
which involves a constant weighing factor, our work explores

alternative approaches with focus on three different methods
used across all experimenting. In addition, we improve with
regards to capturing the temporal evolution of videos using
recurrent neural networks, considering the shortcomings of
SVM classifiers in capturing temporal evolutions.

Regarding video evolution, Fernando et al. [27] postulate a
function capable of ordering the frames of a video temporally.
They learn a ranking function per video using a ranking
machine and use the learned parameters as a video descriptor.
Several other methodologies, e.g., HMM [28], [29], CRF-
based methods [30], also have been employed in this aspect.
These methods model the video evolution in frame level.
In contrast, attempts for temporal ordering of atomic events
also has been made [31], [32]. Rohrbach et al. [31], encode
transition probabilities of a series of events statistically with
a HMM model. Bhattacharya et al. [32] identify low level
actions using dense trajectories and assign concept identity
probabilities for each action. They apply a LDS on these
generated concept vectors to exploit temporal dynamics of the
low level actions. Li et al. [33] uses simple dynamical systems
[34], [35] to create a dictionary of low-level spatio-temporal
attributes. They use these attributes later as a histogram to
represent high level actions. Our method too follows a similar
approach, as we also generate descriptors for sub-events and
then extract temporal progression of these sub-events. How-
ever, instead of a simple statistical model, which has a finite
dynamic response, we use an LSTM network [36] to capture
these dynamics. In action recognition literature, such models
are starting to appear. In Yue-Hei et al. [37] the LSTM network
models the dynamics of the CNN activations, and in Donahue
et al. [38], the LSTM network learns the temporal dynamics
of low level features generated by a CNN.

III. METHODOLOGY

A. Overview

This section outlines our approach. The overall methodol-
ogy is illustrated in Fig. 1.

Our activity classifier classifies video snippets based on
their descriptors. In order to compute descriptors, initially,
we segment a video into small snippets of 15 frames with a
constant frame overlap. Then we carry out feature construction
pipelining for each of these snippets, as shown in Fig. 1. We
compute features for each snippet that describe both motion
and static domains. For extracting motion features, we create
motion tubes across frames, where we track each moving
area across the frames using “action boxes”. Action boxes are
square regions, which exhibit significant motion in each frame.
We choose candidate areas by first creating dense trajectories
for each frame, and then clustering trajectory points preceded
by a significant amount of pre-processing. This process is
explained in sub-section III-B. These action boxes create
motion tubes by getting linking across the frames. Then we
calculate HOOF [7] features within these motion tubes and
apply a bag-of-features method on these to create a motion
descriptor for each video segment.

For extracting static features we train a deep CNN on
ImageNet. Then we apply this CNN on the frames of each

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. XX, MONTH 201X 4

Addition

vi,1 Fusion layer

BoW

vi,n

CNN

HOOF

LSTM network

Static vector

Motion vectorMotion tubes

...

...

· · · Classification

Fig. 1. Overall methodology. The whole process consists of five major steps: (i) segmenting a video (ii) crafting static features, (iii) crafting motion features,
(iv) fusing static and motion features, and (v) capturing temporal evolution of sub events. Static and motion features are independent and complementary. We
generate static features based on a pre-trained CNN and motion features based on motion tubes, and capture the temporal evolution of sub events using an
LSTM network.

video snippet to retrieve deep features—output vector from the
final softmax layer of the CNN—from it. Then we use these
features to create a static descriptor for the video segment.
Afterwards, we combine these motion and static descriptors
using one of the fusion models described in sub-section III-D.

The system can then represent a video as a vector time
series, C = [ct0 , ct1 , . . . , ctn−1

], where n is the number of
segments. Then we apply an LSTM network on these features
and exploit the dynamics of time evolution of the combined
vector. Finally, we classify the dynamics of this time series
and predict actions.

B. Motion Features

This section discusses the detailed methodology of creating
motion features, particularly, “Motion tubes”, “HOOF”, and
“BoW” blocks as illustrated in Fig. 1.

1) Low level motion descriptor: A pixel-level descriptor
is required to identify moving points in the video. Dense
trajectories [3] is a powerful pixel-level algorithm, which
captures and tracks motion across several frames. In this work,
we choose dense trajectories as the low-level descriptor for
capturing raw motion.

2) Clustering: Initially, we create dense trajectories for
every frame in the video. Then in order to isolate each sub area
in a frame which contains significant motion we apply DBScan
clustering on the calculated trajectory points. Algorithm 1
illustrates our clustering approach. Empirically, we use 8 and
10 as ε and MinPoints parameters respectively.

Despite the presence of many regions which contain motion
in a video, some are neither significant nor descriptive. Those
moving regions can be neglected without loss of performance.
Therefore, after clustering each trajectory point in to cluster
groups non-significant cluster groups are ignored. We do this
in order to prevent the algorithm focusing on small random
moving areas in a video and to limit creation of motion tubes
to areas which are significant and descriptive. Therefore all

Algorithm 1 DBScan clustering algorithm.
Require: D . Dataset of sub-areas in frame
Require: M . Min. no. of points
Require: ε . Max. cluster radius

1: c← 0 . initialize cluster no.
2: for each P ∈ D do
3: if P is visited then
4: continue
5: end if
6: mark P as visited
7: NeighborPts = GETALLPOINTS(P , ε)
8: if size(NeighborPts) < M then
9: mark P as noise

10: else
11: c = next cluster
12: ADDTOCLUSTER(P , NeighborPts, c, ε, M)
13: end if
14: end for
15: function ADDTOCLUSTER(P , NeighborPts, c, ε, M)
16: add P to cluster c
17: for each point np ∈ NeighborPts do
18: if P is not visited then
19: mark np as visited
20: NeighborPts′ = GETALLPOINTS(np, ε)
21: if size(NeighborPts) ≥ M then
22: NeighborPts′ ← NeighborPts joined with

NeighborPts′

23: end if
24: end if
25: if np is not yet member of any cluster then
26: add np to cluster c
27: end if
28: end for
29: end function
30: function GETALLPOINTS(P , ε) return all points within

P ’s ε-neighborhood (including P)
31: end function

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. XX, MONTH 201X 5

the clusters which are not at least 50% the size of the largest
cluster of the frame are discarded.

After identifying the initial candidate clusters for creating
action boxes, further processing is done to each cluster to en-
sure that it contains only the important moving areas according
to Algorithm 2. For each point, the Chebychev distance from
the centroid of the cluster is calculated. We discard the furthest
20% of the points from the cluster. The reason behind the
choice of Chebychev distance over Euclidean distance is due
to the possibility of obtaining symmetric square shaped cluster
groups as opposed to circular ones. This makes it easier to
track moving areas and create motion tubes.

Algorithm 2 Boundary noise removal algorithm of clusters.
Require: Md . Max. Chebychev dist.
Require: C . Input cluster

1: totalPoints ← points within Md of center of C
2: currentPoints ← totalPoints
3: while true do
4: if COUNT(currentPoints) < COUNT(totalPoints) ×0.8

then return currentPoints
5: end if
6: Md ←Md − 1
7: currentPoints ← points within Md of center of C
8: end while

After identifying square-shaped interest regions (action
boxes), we represent each of them with a vector, b =
(x, y, r, f), where x and y are the coordinates of the top left
corner of the box, r is the height or width of the box, and f
is the frame number.

3) Motion Tubes: Since our work models the time evolution
of sub activities within a video, we divide each input video
Vi into temporal segments, f(Vi) = [vi,1, vi,2, . . . , vi,n], and
create features for each individual segment separately. There-
fore, after creating the action boxes for each video segment,
the action boxes within a segment vi,t can be represented as,

g(vi,t) =
{
[bt,1,1, bt,1,2, . . . , bt,1,q],

[bt,2,1, bt,2,2, . . . , bt,2,p], . . . , [bt,n,1, bt,n,2, . . . , bt,n,k]
}
(1)

where bt,j,k is the kth action box in jth frame of the tth

video segment. Note that the number of action boxes differ
from frame to frame.

Therefore, before linking the action boxes, to create motion
tubes further pre-processing is needed to ensure the same
number of action boxes exist in every frame within a video
segment. Otherwise, different motion tubes could become
joined halfway through the video, and the effort to capture
dynamics of each moving object separately is disturbed.

For this purpose, first we calculate the mean number of
action boxes per frame in each segment. Then we obtain the
rounded down value, N , of the mean number. Afterwards, we
iterate through each frame starting from frame number 1 until
we come to a frame W which has N number of action boxes.
Then from frame W we propagate forward and backward
along the frames, either to eliminate or add action boxes. The

procedure is explained below. If the action box count in a
particular frame is larger than the previous frame, the smallest
excess number of action boxes are removed.

In the case where the action box count is lower than the
previous frame, linear regression is used for each x, y and r
value of vector b = (x, y, r, f) up to that frame, in order to
create artificial action boxes until the number of action boxes
matches N .

Note how this processing results in Eq. 1 being transformed
in to Eq. 2, thus verifying that the number of action boxes per
frame is equal for all frames within a video segment.

h(g(vi,t)) =
{
[bt,1,1, bt,1,2, . . . , bt,1,k],

[bt,2,1, bt,2,2, . . . , bt,2,k], . . . , [bt,n,1, bt,n,2, . . . , bt,n,k]
}
(2)

The following procedure is used to link the action boxes
in consecutive frames. Assume bt,k,1,bt,k,2,. . . ,bt,k,n and
bt,k+1,1,bt,k+1,2,. . . ,bt,k+1,n are action boxes in two consecu-
tive frames at time k and k + 1. Then the following distance
matrix is calculated.

D =

D11 D12 D13 . . . D1k

D21 D22 D23 . . . D2k

...
...

...
...

...
Dk1 Dk2 Dk3 . . . Dkk

 (3)

where Di,j is the Euclidean distance between the centroids
of ith action box in kth frame and jth action box in (k+1)st

frame. Then uth action box at k + 1, and 1st action box at k
are linked, where u is found using,

u = argminj
j∈J

{D1,j}, J = {1, 2, . . . , l} (4)

Then the 1st row and the uth column are removed from the
distance matrix, and we apply the same process repeatedly
using Eq. 4 to link each of the action boxes at k with k + 1.

By this removal process, we avoid combining of motion
tubes half-way through the video segment and keep them
isolated from each other, which is vital for capturing the
dynamics separately for each moving object.

Finally, we create a (z × n)-by-5 matrix Mi—z and n
are number-of-frames and number-of-action-boxes-per-frame,
respectively—which encodes all the information of motion
tubes, in a particular video segment i. The rows of Mi for
the kth frame is shown in Eq. 5,

Mi =

k 1 xz,1 yz,1 rz,1
k 2 xz,2 yz,2 rz,2
...

...
...

...
...

k n xz,n yz,n rz,n

 (5)

where the columns represent the frame number, action box
number, x coordinate of the top left corner of the action box,
y coordinate of the top left corner of the action box, and the
width/height of the action box, respectively.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. XX, MONTH 201X 6

4) Histogram Oriented Optic Flows (HOOF): Since each
action box in a particular motion tube may differ in size, we
take R = max(ri), for ∀i, where ri is the length of the ith

action box of the motion tube. Then we redraw the action
boxes around their centroids having width or length as R. After
identifying the k number of motion tubes (k is a variable) for
each video segment vi,n, we calculate the optic flows along
each motion tube using Lucas et al. [39]. After that we create
HOOF [7] for every action box within a motion tube. Each
optic flow vector within a spatio-temporal action box within
a motion tube is binned according to its primary angle from
the horizontal axis and weighted according to its magnitude.
Therefore, all optical flow vectors, z = [x, y]T with direction,
θ = tan−1(xy) in the range,

− π

2
+ π

b− 1

B
≤ θ < −π

2
+ π

b

B
(6)

will contribute a weight of
√
x2 + y2 to the sum in bin b,

1 ≤ b ≤ B out of a total of B bins. Finally, the histogram is
normalized. We choose 100 number of bins. Example HOOF
creation for 6 bins is illustrated in Fig. 2.

5) Bag of HOOFs: We use a bag of features method to
create a motion descriptor for each video segment. First, we
create a code book for HOOF vectors. 100,000 vectors are
randomly selected from all the HOOF vectors of all the video
segments in all video classes. Then these 100,000 vectors are
clustered using k-means clustering and 1000 cluster heads are
identified. We choose the number of cluster heads as 1000,
because the dimensions of final motion descriptors are needed
to be the same as the static descriptors, which is explained in
section V. Then for each video segment vi,n, a histogram is
calculated as follows.

We calculate,

p = argminj
j∈J

(Tj − hn,k), J = {1, 2, . . . , 1000} (7)

for each k in {1, 2, . . . , l}, where hn,k is the kth HOOF
vector of the nth video segment, and Tj is the jth cluster
head. Then we increment the histogram values as,

Hn(p) = Hn(p) + 1 (8)

where Hn(p) is the pth value, 1 ≤ p ≤ 1000, of his-
togram of the nth video segment vi,n. After calculating the
histogram vector Hn for every video segment vi,n this H =
[H1, H2, . . . ,Hn] is the vector time series, which encodes the
time evolution of motion information in the video.

C. Static Features

In this sub section we discuss crafting of static features.
This section relates to the “CNN” and “Addition” blocks in
Fig. 1.

In order to create static descriptors, we create a CNN of
1000 output classes, and train it on the ImageNet dataset. The
architecture is shown in figure 3. After training, we apply the
trained model on each individual frame of each video segment.
Then we average the output vectors of the CNN along indices
and obtain a static descriptor si for each video segment vi.

1

2

3

4

5

6

1

2

3

4

5

6

1 2 3 4 5 6

Fig. 2. Example HOOF generation with 6 bins

Following the same procedure for every vi, we develop a
vector time series, S = [s1, s2, . . . , sn], representing the static
time evolution of the whole video.

D. Fusing of Static and Motion Features

This work depends on three factors; both static and motion
information are vital for action recognition, but the final
accuracy depends on the ratio of contribution of each domain,
and the optimum contribution may depend on the richness of
motion information in the video. We derive our fusion models
addressing all these aspects. The three mathematical models
we use to fuse the static and motion vectors are described
next. This sub section relates to the “Fusion layer” block in
Fig. 1.

1) Cholesky Transformation Based Method: This derivation
is based on the Cholesky transformation. An abstract version
of Cholesky transformation is described below.

Let P and Q be two random variables of unknown correla-
tion. These random variables can be transformed into two new
random variables (R and S) with a known correlation of ρ,
where the value of ρ can be chosen at will. The transformation
can be performed as follows.[

Y
Z

]
=

[
1 0

ρ
√
1− ρ2

]
×
[
P
Q

]
(9)

Therefore,

Y = P (10)

and

Z = ρP +
√
1− ρ2Q (11)

The Cholesky transformation guarantees that the correlation
between the two random variables Y and Z is ρ.

Based on the above properties of the Cholesky transforma-
tion, we propose the following methodology to fuse the static
and motion vectors.

Let S and M be static and motion vectors, respectively.
Cholesky transformation can be applied to the two vectors S
and M with the correlation value ρ1.[

Y
Z

]
=

[
1 0

ρ1
√
1− ρ21

]
×
[
S
M

]
(12)

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. XX, MONTH 201X 7

.
.

.

(64, 5× 5, 1, 2, T, 2)

.
.

.

(256, 3× 3, 1, 1, F,)

.
.

.

(256, 3× 3, 1, 1, F,)

.
.

.

(256, 3× 3, 1, 1, F, 2)

.
.

.

(256, , , , F,) 4096

Full

4096

Full

Soft max

(3, 11× 11, 4, 0, T, 2)

Fig. 3. CNN architecture used for generating static features. The CNN consists of five convolution layers, two fully connected layers, and one softmax layer.
The details of each convolutional layer are provided on top of each layer according to the following format:(number of convolution layers × filter width ×
filter height, convolution stride, spatial padding, is Local Response Normalization added, max-pooling factor). Value above fully connected layers indicates
the dimensionality of the layer. We use ReLu as the activation function.

Y = S (13)

Z = ρ1M +
√
1− ρ21M (14)

Similarly, the transformation can be applied to M and S
with the correlation value ρ2.[

A
B

]
=

[
1 0

ρ2
√
1− ρ22

]
×
[
M
S

]
(15)

A =M (16)

B = ρ2S +
√

1− ρ22S (17)

Again, the Cholesky transformation guarantees the follow-
ing two properties.

1) The correlation between S and Z is ρ1.
2) The correlation between M and B is ρ2.
Therefore, if the values of ρ1 and ρ2 are chosen in such a

way that they obey the following rule,

ρ2 =
√
1− ρ21 (18)

it can be guaranteed that Z = B, ∀S,M, ρ1, ρ2. Hence, the
resultant vector C can be obtained by,

C = Z = B (19)

where the correlation between C and S is ρ1 and the
correlation between C and M is ρ1. Here S and M represent
the static and the motion vectors whereas C represents the
resultant vector. This derivation leads us to an important
intuition: by choosing the value of ρ1, we can choose the
degree to which the static features and the motion features
contribute, in deriving the resultant vector. In section 4, it
is shown, how this property is used to explore, the opti-
mal contribution of static and motion domain information
for recognizing actions. The derivation of an optimum ratio
between these would require either a continuous variation of
the ratio for test datasets, or a theoretical derivation of an
optimum ratio. However, we hypothesize that this ratio would
depend on various characteristics of a given dataset (which we
explore over our experiments), and the intention of this study

is towards establishing the existence of an optimum ratio, and
not the derivation of that optimum ratio.

2) Variance Ratio Based Method: The second method
employed to combine the motion and static vectors is based
on a Gaussian probability model. We model each vector as a
histogram. Using the histogram model, the mean and variance
of each vector are calculated in order to fit the two vectors
into Gaussian distributions. The joint Gaussian distribution is
then computed based on this data.

Gsm(N) =
1

2πσmσs
e
−
[

[N−µs]2

2σ2s
+

[N−µm]2

2σ2m

]
(20)

This computation corresponds to the evaluation line ob-
tained when equating the two random variables. This eval-
uation line is the diagonal through the origin of the static
vector vs motion vector plot. The combined distribution is
then obtained through this process.

It must be noted that both histograms (corresponding to
static and motion components) do not contain equal informa-
tion. Hence varying the contribution of each histogram to the
resultant distribution is necessary. This requires varying of the
evaluation line which can be achieved through scaling of the
motion and static axes. This scaling process is carried out by
the following matrix.

Scaling matrix =

[σs
σs+σm

0

0 σm
σs+σm

]
We may conclude that higher variance of a component along

one axis reflects lower detail in the model with regards to the
other axis. Considering the motion axis, the contribution of
this vector towards the resultant vector may be defined by
(1− σm

σm+σs
). A high variance always corresponds to a flatter

histogram containing less detail.
This parameter we derive is significant as it defines the

contribution of each individual motion and static vector pair
independent of explicit terms. Hence the optimum ratio for
combination of motion and static components of a given
dataset can be mathematically evaluated. With regards to the
datasets used for experimenting, 30% of motion vector and
70% of static vector constitute this parameter on average.
This mathematical inference is further verified through the
experiment results in section IV.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. XX, MONTH 201X 8

Defining new parameters Ns and Ns as follows, we build a
new distribution which is a scaled version of the joint Gaussian
distribution obtained previously.

Ns = N
σm

σm + σs

Ns = N
σs

σm + σs

Finally, we define the following distribution representative
of the combined vector.

Gsm(N) =
e
− 1

2(1−ρ2)

[
[Ns−µ′s]

2

2σ′2s
+

[Nm−µ′m]2

2σ′2m
− 2ρ[Ns−µ′s][Nm−µ

′
m]

σ′sσ
′
m

]

2πσ′mσ
′
s

√
1− ρ2

(21)
The corresponding mean and variance of this newly com-

puted distribution are denoted by µ′s, σ
′
s and µ′m, σ′m for the

static and motion vector respectively.
3) PCA Based Method: The third fusion method is based on

Principle Component Analysis (PCA). If there are n number
of features in the input vector of the PCA, the output of the
PCA will provide a new set of n features which are orthogonal
and uncorrelated. Also, if output = [a1, a2, ..., an], then
var(a1) > var(a2) > · · · > var(an). Due to the properties
of the PCA, the original set of n features can be represented
precisely using the first k(n > k) principal components of the
output vector, given that the total squared reconstruction error
is minimized.

In other words, the essence of the original n dimensional
dataset is now almost completely represented by the new
k dimensional dataset with a minor data loss. Thus, the
dimension of the dataset is reduced from n to k.

In our work, the dimensionality of the dataset T is 2
(number of feature domains: static and motion). Using PCA
on T , we receive a new set T ’, with 2 new features domains.
We need only one new feature domain in the feature space
to represent motion and static domains. Therefore, it is our
aim to extract only the first principal component. In order to
do this, we need to justify that the first principal component
contains a significant majority of the essence of the original
dataset. In other words, only a negligible amount of data is
lost by eliminating the second principal component.

Therefore, we perform PCA on over 15,000 samples of
motion and static vectors and plot the variance percentage
of the total variance explained by the first and the second
principal components respectively, as in figure and figure

It is evident from the figure that the first principal com-
ponent almost always accounts for over 97% of the essence
of the original dataset, except for only a negligible amount
of samples. The lowest percentage registered is approximately
85%, which is still a significantly high value. Figure 4 shows
the percent standard deviation values for the first and second
components of the PCA for the two datasets.

Therefore, by eliminating the second principal component,
only less than 5% of data is lost in average, and hence only the
first principal component can be used to accurately represent
the original dataset.

0 0.5 1 1.5

·104
94

96

98

100

n

%
st
an

d
a
rd

d
ev
ia
ti
on

PCA component 1 for Youtube

0 0.5 1 1.5

·104

0

2

4

6

n

%
st
an

d
a
rd

d
ev
ia
ti
o
n

PCA component 2 for Youtube

0 1,000 2,000 3,000 4,000 5,000
97

98

99

100

n

%
st
an

d
a
rd

d
ev
ia
ti
on

PCA component 1 for Hollywood

0 1,000 2,000 3,000 4,000 5,000

0

1

2

3

n

%
st
a
n
d
a
rd

d
ev
ia
ti
o
n

PCA component 2 for Hollywood

Fig. 4. Percent standard deviation values for the first and second components
of the PCA. n is the feature vector index.

E. Capturing Temporal Evolution

Our work requires analyzing complex dynamic temporal
patterns in the generated sequences. This sub section relates
to the “LSTM network” block shown in Fig. 1 used for this
purpose.

In our work, we represent each video as n fixed-length
segments (n differs for videos of different lengths) with
overlapping frames. Each segment is represented with a fused
vector ct. Therefore, each video can be represented as a vector
time series.

Now each vector time series could be analyzed using tradi-
tional time series modeling techniques, such as Auto Regres-
sive Moving Average, to obtain features or model parameters
that can describe the vector time series. But the main drawback
of these methods is that they model current values of a series
as a function of past values and have finite dynamic response
to time series input. Also, they lack the ability to grasp the
internal state representations of a complex time series. RNNs
maintain hidden layers with directed feedback connections,
and hence, have an infinite dynamic response. While training,
it learns internal states of a sequence and usually performs
better in modeling complex dynamic temporal patterns of long
sequences.

However, it is not ideal to train standard RNNs to solve
problems, which require learning of long-term temporal de-
pendencies. This is because of the vanishing-gradient problem,
which occurs due to the exponential decay of gradient loss of
the function with respect to time.

In practice, LSTM networks typically perform better in such
cases. LSTM networks are a special type of RNN, which
include a “memory cell”, and as the name suggests, it can
maintain a certain state in memory for longer periods of
time. It also has a set of control gates for controlling the
removal or addition of information to the cell state. This
special architecture gives them the ability to capture more

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. XX, MONTH 201X 9

it ot

ct ht

ft

Feedback

Xt Xt

Xt

Xt

Forget gate

Output
gate

Input
gate

Cell

Fig. 5. Long short-term memory (LSTM) block cell. Source [40].

Input layer

LSTM layer

Output layer (softmax)

Fig. 6. A simple illustration of the LSTM network. The network consists of
an input layer, a 128-unit LSTM layer with 0.8 dropout, and a fully-connected
softmax output layer.

long-term dependencies. First, we revise the operation of an
LSTM network.

The most important structure of an LSTM unit is its
memory cell ct, which preserves the state. Basic structure
of an LSTM unit is shown in figure 5. The memory cell is
self-connected, and it has three gates (multiplicative units),
i.e., input gate, forget gate and output gate, which are used
to control how much long range contextual information of a
temporal sequence to store, remove or output.

The detailed activation process of the memory cell and three
gates, as shown in Fig. 5 is illustrated as follows:

it = σ(Wxix
t +Whih

t−1 +Wcic
t−1 + bi) (22)

f t = σ(Wxfx
t +Whfh

t−1 +Wcfc
t−1 + bf) (23)

ct = f tct−1 + ittanh(Wxcx
t +Whch

t−1 + bc) (24)

ot = σ(Wxox
t +Whoh

t−1 +Wcoc
t−1 + bo) (25)

ht = ot tanh(ct) (26)

where W is the connection weight between two units and
σ(·) is the sigmoid function.

Since the LSTM network is used only for capturing the
temporal dynamic patterns between sub actions, one LSTM
layer is enough. Our LSTM network is shown in Fig. 6. The
network consists of an input layer, a 128-unit LSTM layer
with 0.8 dropout, and a fully connected softmax output layer.
As we have a sequence of activities per classification, we use
a many-to-one approach for feeding the fused vectors to the
network, as shown in Fig. 7.

LSTM

wl

c1

LSTM

wl

c2

LSTM

wl

c3

LSTM

wl

c4

LSTM

wl

cn

· · ·

· · ·

· · ·

Output

Fig. 7. The process of feeding fused vectors to the LSTM network. ci
indicates the fused vector representing the ith video segment.

IV. EXPERIMENTS AND RESULTS

This section details our experimental methodology and the
video datasets used. We evaluate our approach on the two
popular datasets UCF-11 and Hollywood2. On both datasets,
we show that our work exceeds the current state-of-the-art
results. We also vary the contribution of static and motion
features for the calculation of combined vector series and
explore what is optimum contribution from each domain.
We show that optimum contribution may vary depending on
the dataset. We also show that static and motion features
are complementary, and provide vital information about the
actions occurring in a video. We compare our three fusion
models and show that all the methods are better or on par
with existing state-of-the-art. Furthermore, we highlight the
importance of considering the time evolution of sub activities
in order to identify complex events by comparing the results
of LSTM and Random Forest Classification algorithm(which
does not capture the temporal dynamics), when applied on our
features.

A. Datasets

Holywood 2 [10]: This consists of 12 classes of human actions
distributed over 1500 video clips: answer phone, drive car, eat,
fight person, get out car, hand shake, hug person, kiss, run,
sit down, sit up, and stand up. The dataset is composed of
video clips from 69 movies and provides a challenging task,
in automatic action detection.
UCF-11 [9]: This consists over 1000 sports and home videos
from YouTube. This dataset contains 11 action classes: basket-
ball shooting, cycle, dive, golf swing, horse back ride, soccer
juggle, swing, tennis swing, trampoline jump, volleyball spike,
and walk with a dog. Each of the action sets is subdivided
into 25 groups sharing similar environment conditions. This is
a challenging dataset with camera jitter, cluttered backgrounds
and variable illumination.
HMDB-51 [11]: This dataset consists of 6849 videos divided
into 51 action classes, with each class containing a minimum
of 101 videos. The actions categories can be grouped in five
types: general facial actions like smile, laugh, chew, and talk;
facial actions with object manipulation like smoke, eat, and
drink; general body movements like cartwheel, clap hands,
climb, climb stairs; body movements with object interaction
like brush hair, catch, draw sword, dribble; and body move-
ments for human interaction like fencing, hug, kick someone,
kiss. This is also a challenging dataset as the use of video

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. XX, MONTH 201X 10

TABLE I
DERIVATION OF ρ VALUES FOR DIFFERENT CONTRIBUTION LEVELS OF

STATIC AND MOTION DOMAINS TO THE FUSED VECTOR

Contribution to Z ρ value Fusion vector

80% Motion, 20% Static
ρ1 = 4ρ2

1
4
ρ1 =

√
1− ρ21

ρ1 = 4√
17

Z = 4√
17
M + 1√

17
S

60% Motion, 40% Static
2ρ1 = 3ρ2

2
3
ρ1 =

√
1− ρ21

ρ1 = 3√
13

Z = 3√
13
M + 2√

13
S

50% Motion, 50% Static
ρ1 = ρ2

ρ1 =
√

1− ρ21
ρ1 = 1√

2

Z = 1√
2
M + 1√

2
S

40% Motion, 60% Static
3ρ1 = 2ρ2

3
2
ρ1 =

√
1− ρ21

ρ1 = 2√
13

Z = 2√
13
M + 3√

13
S

80% Motion, 20% Static
4ρ1 = ρ2

4ρ1 =
√

1− ρ21
ρ1 = 1√

17

Z = 1√
17
M + 4√

17
S

TABLE II
OVERALL ACCURACY OF UCF-11, HOLLYWOOD2, AND HMDB51 FOR

VARYING RATIOS BETWEEN STATIC AND MOTION COMPONENTS. THE
VECTORS ARE FUSED USING CHOLESKY METHOD. RATIOS ARE

INDICATED IN THE FORMAT STATIC:MOTION.

Dataset UCF-11 Hollywood2 HMDB51
100:0 91.8% 56.9% 48.2%
80:20 96.3% 80.9% 62.25%
60:40 95.3% 73.6% 67.24%
50:50 95.3% 64.9% 58.64%
40:60 93.6% 60.3% 42.48%
20:80 91.8% 51.9% 40.43%

clips extracted from real-world videos possess the presence
of significant camera/background motion alongside varying
illumination.

B. Contribution of Static and Motion Domains

The derivation done in Cholesky based method for fus-
ing the static and motion vectors, provides us an insightful
intuition: we can control the contribution of motion and
static domains to the fusion vector by varying the ρ value.
The derivation of ρ values for different contribution ratios is
illustrated in table I.

Results for these different contribution values for UCF-11
and Hollywood2 datasets, are shown in table III and table IV.
We use accuracy and mean average precision as performance
metrics, for UCF-11 and Hollywood2, respectively. For both
datasets, we obtain the optimum contribution ratio as 80:20
between static and motion vectors. In the case of HMDB51
dataset, the optimum contribution ration is obtained as 60:40
between static and motion vectors.

An overview distribution of the overall performance over
different contribution levels, from static and motion domains,
for both datasets is shown in Fig. 8 and Fig. 9. We can see that
the performance change for different contribution percentages
of motion and static domain. Also, the optimum contribution
may change depending on the nature of the action and richness
of motion or static information in the video. For example, if the
motion patterns are indistinguishable across actions, static in-

100:0 80:20 60:40 50:50 40:60 20:80 0:100
80

85

90

95

100

Contribution level of motion and static domains

A
cc

ur
ac

y

B shooting

Biking

Diving

G swinging

H riding

S juggling

Swinging

T swinging

T jumping

V spiking

W dog

Fig. 8. Accuracy distribution for different contribution levels of motion
and static domains. This figure illustrates that motion:static ratio affects the
accuracy and the optimum contribution depends on the UCF-11 dataset for
each class.

formation plays a critical role, for determining the action, and
vise versa. The amount of interaction with objects also may
play a key role in determining this ratio. In Fig. 9 it is evident
that for action classes which does not highly interact with
external objects—such as kiss,run, sitdown, situp, standup
handshake—, the optimum motion:static ratio is 40:60. For
other action classes, which interact with objects, optimum
motion:static ratio is 20:80. This highlights our hypothesis,
that being able to control this contribution explicitly, is vital
for an action recognition system.

C. Mathematical Validation of Optimum Contribution

As it is evident from the results of table III and table IV,
we experimentally obtain the optimum contribution ratio for
the datasets UCF-11 and Holllywood2 as 80:20. In section III,
in the derivation of the variance ratio based fusion model, we
mathematically obtained values for the optimum contribution
as 70:30 for the same datasets. It should be noted that these
values closely represent the experimental values, and hence,
the results are further verified.

D. Comparison of Fusion Models

The per-class accuracies obtained for each fusion model
is illustrated in table V and table VI. Although all three
methods give impressive results, Cholesky based fusion model
is superior, and has an overall accuracy of 96.3% for UCF-11.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. XX, MONTH 201X 11

TABLE III
PER-CLASS ACCURACY FOR DIFFERENT CONTRIBUTION OF STATIC AND MOTION VECTORS FOR UCF-11. THE VECTORS ARE FUSED USING CHOLESKY
METHOD. RATIOS ARE INDICATED IN THE FORMAT STATIC:MOTION. HIGHEST ACCURACY FOR UCF-11 IS ACHIEVED USING A 80:20 RATIO BETWEEN

STATIC AND MOTION VECTORS.

Class 100:0 80:20 60:40 50:50 40:60 20:80 0:100
B shooting 92.4% 96.3% 92.7% 96.3% 91.3% 91.9% 91.3%
Biking 94.3% 97.8% 95.6% 95.4% 95.4% 92.6% 89.5%
Diving 90.3% 95.8% 94.3% 94.3% 93.1% 89.6% 86.2%
G swinging 93.2% 96.7% 96.0% 95.8% 93.3% 92.8% 90.5%
H riding 94.0% 98.0% 96.6% 95.6% 93.1% 90.2% 87.2%
S juggling 92.4% 96.5% 96.0% 96.0% 93.7% 90.2% 85.4%
Swinging 89.3% 94.3% 94.3% 93.6% 94.1% 91.7% 88.2%
T swinging 92.3% 96.9% 95.7% 94.5% 94.1% 93.3% 90.6%
T jumping 93.7% 97.6% 96.7% 94.5% 94.1% 93.1% 90.6%
V spiking 88.2% 93.4% 94.2% 97.2% 94.1% 93.0% 89.3%
W dog 90.2% 96.7% 96.2% 95.4% 93.3% 91.9% 87.2%
Accuracy 91.8% 96.3% 95.3% 95.3% 93.6% 91.8% 88.72%

TABLE IV
MAP FOR EACH CLASS FOR DIFFERENT CONTRIBUTION OF STATIC AND MOTION VECTORS TO THE FUSED VECTOR FOR HOLLYWOOD2. RATIOS ARE
INDICATED IN THE FORMAT STATIC:MOTION. HIGHEST MAP FOR HOLLYWOOD2 IS ACHIEVED USING A 80:20 RATIO BETWEEN STATIC AND MOTION

VECTORS.

Class 100:0 80:20 60:40 50:50 40:60 20:80 0:100
AnswerPhone 52.3% 76.6% 49.6% 42.4% 38.2% 36.6% 28.2%
DriveCar 54.6% 98.1% 49.2% 42.5% 39.1% 37.7% 26.4%
Eat 50.0% 62.1% 55.6% 53.2% 53.2% 50.1% 40.0%
FightPerson 72.2% 94.3% 80.2% 72.8% 66.6% 57.4% 42.2%
GetOutCar 56.9% 77.4% 56.2% 50.2% 47.3% 40.2% 35.5%
HandShake 42.2% 78.9% 80.2% 72.7% 64.4% 50.3% 42.7%
HugPerson 49.9% 77.1% 64.3% 62.6% 57.2% 50.9% 40.6%
Kiss 49.9% 85.3% 86.4% 70.2% 68.7% 60.8% 45.5%
Run 60.2% 78.2% 94.8% 88.2% 82.3% 72.2% 64.5%
SitDown 80.2% 86.2% 91.6% 80.4% 76.9% 67.3% 56.9%
SitUp 58.7% 75.0% 78.2% 70.2% 67.4% 51.8% 47.2%
StandUp 55.5% 81.2% 97.4% 73.6% 62.1% 48.3% 32.3%
mAP 56.9% 80.9% 73.6% 64.9% 60.3% 51.9% 41.8%

TABLE V
COMPARISON OF FUSION MODELS ON UCF-11 DATASET.

Class Cholesky Variance ratio PCA
B shooting 96.3% 90.3% 90.6%
Biking 97.8% 90.8% 91.0%
Diving 95.8% 92.3% 89.3%
G swinging 96.7% 90.3% 92.3%
H riding 98.0% 87.4% 88.6%
S juggling 96.5% 89.7% 92.8%
Swinging 94.3% 90.0% 88.0%
T swinging 96.9% 89.4% 93.0%
T jumping 97.6% 92.5% 91.0%
V spiking 93.4% 91.6% 91.7%
W dog 96.7% 91.6% 93.4%
Accuracy 96.3% 90.5% 91.1%

For Hollywood2 dataset, it achieves a mean average precision
of 80.9%.

E. Comparison with the state-of-the-art
Table VII compares our results to state of the art. We use a

motion:static ratio of 20:80 for both ”change/HMDB” datasets
to combine the static and motion vectors, since these values
gave the best results. On UCF-11, we significantly outperform
the state of the art Ramasinghe et al. [6] by 3.2%. A mean
average precision of 80.9% is achieved by our system for
Hollywood2, which outperforms the state-of-the-art by 16.6%.
”add here”

TABLE VI
COMPARISON OF FUSION MODELS ON HOLLYWOOD2 DATASET

Class Cholesky Variance ratio PCA
AnswerPhone 76.6% 62.4% 67.6%
DriveCar 98.1% 72.8% 70.0%
Eat 62.1% 49.4% 56.5%
FightPerson 94.3% 78.2% 72.6%
GetOutCar 77.4% 46.9% 56.7%
HandShake 78.9% 56.9% 55.6%
HugPerson 77.1% 52.4% 60.6%
Kiss 85.3% 64.0% 66.6%
Run 78.2% 58.3% 54.3%
SitDown 86.2% 72.0% 68.6%
SitUp 75.0% 50.0% 54.7%
StandUp 81.2% 54.4% 50.0%
mAP 80.9% 59.8% 61.1%

Per-action class results, are also compared in table VIII and
table IX. In UCF-11, our method excells in 8 out of 11 classes,
when compared with Lucas et al. [39], Wang et al. [3], Ikizler
et al. [42] and Ramasinghe et al. [6]. In Hollywood2, we
calculate the average precision of each class, and compare
with Lucas et al. [39], Wang et al. [3], and [47]. We achieve
best results in 10 out of 12 classes in this case.

F. Effectiveness of Capturing Time Evolution

As discussed in earlier sections, complex actions are com-
posed of sub activities preserving a temporal pattern. In this

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. XX, MONTH 201X 12

TABLE VII
COMPARISON OF OUR METHOD WITH STATE-OF-THE-ART METHODS IN THE LITERATURE. STATIC:MOTION RATIOS ARE 80:20 FOR UCF-11 AND
HOLLYWOOD2, AND 60:40 FOR HMDB51. THE RESULTS MENTIONED OF OUR SYSTEM ARE THOSE OBTAINED USING THE CHOLESKY METHOD.

UCF-11 Hollywood2 HMDB51
Liu et al. [9] 71.2% Vig et al. [41] 59.4% Wang et al. [4] 57.2%
Ikizler-Cinbis et al. [42] 75.21% Jiang et al. [43] 59.5% Wang et al. [15] 65.9%
Wang et al. [3] 84.2% Mathe et al. [44] 61.0% Zhu et al. [45] 68.2%
Sameera et al. [6] 93.1% Jain et al. [46] 62.5%

Wang et al. [3] 58.3%
Wang et al. [4] 64.3%

Our method 96.3% Our method 80.9% Our method 67.24%

TABLE VIII
PER-CLASS ACCURACY COMPARISON WITH STATE-OF-THE-ART ON UCF-11.

Class Ours(Cholesky) KLT [39] Wang et al. [3] Ikizler-Cinbis [42] Ramasinghe et al. [6]
B shooting 96.3% 34.0% 43.0% 48.5% 95.6%
Biking 97.8% 87.6% 91.7% 75.17% 93.1%
Diving 95.8% 99.0% 99.0% 95.0% 92.8%
G swinging 96.7% 95.0% 97.0% 95.0% 95.0%
H riding 98.0% 76.0% 85.0% 73.0% 94.3%
S juggling 96.5% 65.0% 76.0% 53.0% 87.8%
S winging 94.3% 86.0% 88.0% 66.0% 92.4%
T swinging 96.9% 71.0% 71.0% 77.0% 94.9%
T jumping 97.6% 93.0% 94.0% 93.0% 94.0%
V spiking 93.4% 96.0% 95.0% 85.0% 93.2%
W dog 96.7% 76.4% 87.0% 66.7% 91.4%
Accuracy 96.3% 79.0% 84.2% 75.2% 93.1%

TABLE IX
PER-CLASS MAP COMPARISON WITH STATE-OF-THE-ART ON HOLLYWOOD2.

Class Ours KLT [39] Wang et al. [3] Ullah [47]
AnswerPhone 76.6% 18.3% 32.6% 25.9%
DriveCar 98.1% 88.8% 88.0% 85.9%
Eat 62.1% 73.4% 65.2% 56.4%
FightPerson 94.3% 74.2% 81.4% 74.9%
GetOutCar 77.4% 47.9% 52.7% 44.0%
HandShake 78.9% 18.4% 29.6% 29.7%
HugPerson 77.1% 42.6% 54.2% 46.1%
Kiss 85.3% 65.0% 65.8% 55.0%
Run 78.2% 76.3% 82.1% 69.4%
SitDown 86.2% 59.0% 62.5% 58.9%
SitUp 75.0% 27.7% 20.0% 18.4%
StandUp 81.2% 63.4% 65.2% 57.4%
mAP 80.9% 54.6% 58.3% 51.8%

work, we try to capture those underlying patterns by an LSTM
network. It is interesting to verify whether this strategy has an
impact on the accuracy of the classification. Here we directly
feed the fused vectors to a random forest classifier, which does
not capture sequential dynamic patterns, and compare it with
the results obtained by the LSTM network. The results are
shown in Fig. 10 and Fig. 11.

As it is evident from the results in in Fig. 10 and Fig. 11,
LSTM network significantly outperforms the random forest
classifier for both datasets. In Hollywood2, the LSTM network
wins by a 14% margin. In UCF-11, the LSTM network wins by
a 12% margin. Therefore, it can be concluded that, exploiting
temporal patterns of sub activities, benefits complex action
classification.

V. CONCLUSION

This paper presents an end to end system for action classifi-
cation which operates on both static and motion features. Our

approach relies on deep features, for creating static vectors,
and motion tubes for motion features. Motion tubes are a
novel concept we introduce in this paper which can be used
to track individual actors or objects across frames, and model
micro level actions. We present three novel methods: Based on
Cholesky transformation, variance ratio, and PCA for efficient
combining of features from different domains, which is a vital
requirement in action classification. Cholesky method provides
the power to control the contribution of each domain in exact
numbers, and variance ratio based method mathematically
provides an optimum ratio for contribution. We show that these
mathematical and experimental values agree with each other.
We run experiments to show that the accuracy depends on
the ratio of this contribution, and the optimum contribution of
static and motion domains may vary depending on the richness
of motion information. In short, our work demonstrates how
the action classification accuracy varies with the combination
ratio of static and motion features, while establishing the

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. XX, MONTH 201X 13

100:0 80:20 60:40 50:50 40:60 20:80 0:100
0

20

40

60

80

100

Contribution level of motion and static domains

A
cc

ur
ac

y

AnswerPhone

DriveCar

Eat

FightPerson

GetOutCar

HandShake

HugPerson

Kiss

Run

SitDown

SitUp

StandUp

Fig. 9. Accuracy distribution for different contribution levels of motion
and static domains. This figure illustrates that motion:static ratio affects the
accuracy and the optimum contribution depends on the Hollywood2 dataset.

B
sh

oo
tin

g

Biki
ng

Divi
ng

G
sw

ing
ing

H
rid

ing

S
jug

gli
ng

Swing
ing

T
sw

ing
ing

T
jum

pin
g

V
sp

iki
ng

W
do

g

Acc
ura

cy

0

20

40

60

80

100

Action Classes

A
cc

ur
ac

y

LSTM

Random Forest

Fig. 10. Accuracy comparison between Random Forest Classifier and
LSTM for UCF-11 dataset. Motion:static ratio of 20:80 is used. Accuracy is
significantly higher when the temporal dynamics of sub events are captured.

Ans
werP

ho
ne

Driv
eC

ar Eat

Figh
tPers

on

GetO
utC

ar

Han
dS

ha
ke

Hug
Pers

on Kiss Run

SitD
ow

n
SitU

p

Stan
dU

p
mAP

0

20

40

60

80

100

Action Classes

A
cc

ur
ac

y

LSTM

Random Forest

Fig. 11. mAP comparison for Random Forest Classifier and LSTM for
Hollywood2 dataset. Motion:static ratio of 20:80 is used. mAP is significantly
higher when the temporal dynamics of sub events are captured.

existence of an optimum combination ratio for a given test
dataset.

In addition, we note that this variation of optimum ratio
between static and motion feature contribution towards the
final classification accuracy being dependent on the dataset
demonstrates the possibility of this optimum ratio varying
dynamically over time for even a given single video clip.
Thus, based on the temporal variation of motion richness of
any given video clip, the optimum contribution ratio has a
possibility of varying dynamically. We hope to work on this
in future.

Through our experiments we also show that our static and
motion features are complementary, and contribute to the final
result. We also compare our three fusion algorithms, and
show that the Cholesky based method is superior, although
all three of them give impressive results. We also model the
temporal progression of sub-events using an LSTM network.
Experimental results indicate that this is indeed beneficial,
compared to using models which does not capture temporal
dynamics. Comparison of our work with multiple state-of-
the-art algorithms, on the popular datasets, UCF-11, and
Hollywood2, show that our system performs better. The work
on the HMDB51 dataset shows our system to be on par with
the state-of-the-art.

In the future, it would be interesting to improve the motion
tubes, so that, it can maintain an identity over each actor
object. While it is mostly the case even in the present system,
there is no guarantee. Also, in this work the emphasis is on
accelerating the per-actor micro action generation; initially we
detect individual objects in first frame, and subsequently track
those along motion tubes in the following frames. In the future,
exploring more powerful methods to describe micro actions
inside motion tubes would be interesting, since it may increase
the distinctiveness of the motion features and contribute well
to the final accuracy.

ACKNOWLEDGMENT

The authors would like to thank the National Research
Council of Sri Lanka for funding this research under the Grant
12-018.

REFERENCES

[1] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
Columbus, OH, June 2014, pp. 580–587.

[2] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with
deep convolutional neural networks,” Lake Tahoe, NV, Dec 2012, pp.
1097–1105.

[3] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu, “Action recognition by
dense trajectories,” Colorado Springs, CO.

[4] H. Wang and C. Schmid, “Action recognition with improved trajecto-
ries,” Sydney, AUS, Nov 2013, pp. 3551–3558.

[5] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for
action recognition in videos,” Montreal, CAN, Dec 2014, pp. 568–576.

[6] S. Ramasinghe and R. Rodrigo, “Action recognition by single stream
convolutional neural networks: An approach using combined motion
and static information,” in 3rd IAPR Asian Conference on Pattern
Recognition (ACPR), Kuala Lumpur, MAS, Nov 2015, pp. 101–105.

[7] R. Chaudhry, A. Ravichandran, G. Hager, and R. Vidal, “Histograms of
oriented optical flow and binet-cauchy kernels on nonlinear dynamical
systems for the recognition of human actions,” Miami, FL, Jun 2009,
pp. 1932–1939.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. XX, MONTH 201X 14

[8] J. Deng, A. Berg, S. Satheesh, H. Su, A. Khosla, and L. Fei-Fei,
“Imagenet large scale visual recognition competition ILSVRC,” 2012.

[9] J. Liu, J. Luo, and M. Shah, “Recognizing realistic actions from videos
in the wild,” Miami, FL, Jun 2009, pp. 1996–2003.

[10] M. Marszalek, I. Laptev, and C. Schmid, “Actions in context,” Miami,
FL, Jun 2009, pp. 2929–2936.

[11] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “HMDB: a
large video database for human motion recognition,” in Proceedings of
the International Conference on Computer Vision (ICCV), 2011.

[12] G. Gkioxari and J. Malik, “Finding action tubes,” Boston, MA, Jun 2015,
pp. 759–768.

[13] M. Jain, J. V. Gemert, H. Jégou, P. Bouthemy, and C. Snoek, “Action
localization with tubelets from motion,” Columbus, OH, Jun 2014, pp.
740–747.

[14] J. V. Gemert, M. Jain, E. Gati, and C. Snoek, “Apt: Action localization
proposals from dense trajectories,” vol. 2, Swansea, GBR, Sep 2015,
p. 4.

[15] L. Wang, Y. Qiao, and X. Tang, “Action recognition with trajectory-
pooled deep-convolutional descriptors,” Boston, MA, Jun 2015, pp.
4305–4314.

[16] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld, “Learning
realistic human actions from movies,” Anchorage, AL, Jun 2008, pp.
1–8.

[17] C. Schuldt, I. Laptev, and B. Caputo, “Recognizing human actions: a
local svm approach,” in Proc. Int. Conf. on Pattern Recognit., vol. 3,
Cambridge, GBR, Aug 2004, pp. 32–36.

[18] Y. Ke, R. Sukthankar, and M. Hebert, “Efficient visual event detection
using volumetric features,” vol. 1, Beijing, CHN, Jan 2005, pp. 166–173.

[19] E. Shechtman and M. Irani, “Space-time behavior based correlation,”
vol. 1, San Diego, CA, Jun 2005, pp. 405–412.

[20] A. Klaser, M. Marszałek, and C. Schmid, “A spatio-temporal descriptor
based on 3D-gradients,” Leeds, GBR, Sep 2008, pp. 275–1.

[21] T.-H. Yu, T.-K. Kim, and R. Cipolla, “Real-time action recognition by
spatiotemporal semantic and structural forests,” vol. 2, no. 5, Aberyst-
wyth, GBR, Aug 2010, p. 6.

[22] C. Feichtenhofer, A. Pinz, and A. Zisserman, “Convolutional two-stream
network fusion for video action recognition,” Computing Research
Repository (CoRR), vol. abs/1604.06573, Apr 2016.

[23] S. Ji, W. Xu, M. Yang, and K. Yu, “3D convolutional neural networks
for human action recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 1, pp. 221–231, Jan 2013.

[24] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3D convolutional networks,” Santiago, CHI,
Dec 2015, pp. 4489–4497.

[25] H.-J. Kim, J. Lee, and H.-S. Yang, “Human action recognition using
a modified convolutional neural network,” in Int. Symp. on Neural
Networks, Nanjing, CHN, Jun 2007, pp. 715–723.

[26] L. Wang, Y. Qiao, and X. Tang, “Action recognition and detection by
combining motion and appearance features,” 2014.

[27] B. Fernando, E. Gavves, J. Oramas, A. Ghodrati, and T. Tuytelaars,
“Modeling video evolution for action recognition,” Boston, MA, Jun
2015, pp. 5378–5387.

[28] Y. Wang and G. Mori, “Hidden part models for human action recogni-
tion: Probabilistic versus max margin,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 33, no. 7, pp. 1310–1323, Jul 2011.

[29] D. Wu and L. Shao, “Leveraging hierarchical parametric networks for
skeletal joints based action segmentation and recognition,” Columbus,
OH, Jun 2014, pp. 724–731.

[30] Y. Song, L.-P. Morency, and R. Davis, “Action recognition by hierarchi-
cal sequence summarization,” Portland, OR, Jun 2013, pp. 3562–3569.

[31] M. Rohrbach, M. Regneri, M. Andriluka, S. Amin, M. Pinkal, and
B. Schiele, “Script data for attribute-based recognition of composite
activities,” Florence, ITA, Oct 2012, pp. 144–157.

[32] S. Bhattacharya, M. Kalayeh, R. Sukthankar, and M. Shah, “Recognition
of complex events: Exploiting temporal dynamics between underlying
concepts,” Columbus, OH, Jun 2014, pp. 2235–2242.

[33] W. Li, Q. Yu, H. Sawhney, and N. Vasconcelos, “Recognizing activities
via bag of words for attribute dynamics,” Portland, OR, Jun 2013, pp.
2587–2594.

[34] A. Jackson, Perspectives of nonlinear dynamics. CUP Archive, 1992,
vol. 1.

[35] T. Kailath, “A view of three decades of linear filtering theory,” IEEE
Trans. Inf. Theory, vol. 20, no. 2, pp. 146–181, Mar 1974.

[36] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, Nov 1997.

[37] J. Y.-H. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga,
and G. Toderici, “Beyond short snippets: Deep networks for video
classification,” Boston, MA, Jun 2015, pp. 4694–4702.

[38] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell, “Long-term recurrent convolutional
networks for visual recognition and description,” Boston, MA, Jun 2015,
pp. 2625–2634.

[39] B. D. Lucas, T. Kanade et al., “An iterative image registration technique
with an application to stereo vision,” pp. 674–679, 1981.

[40] A. Graves, “Supervised sequence labelling with recurrent neural net-
works,” Ph.D. dissertation, Technische Universität München, 2008.

[41] E. Vig, M. Dorr, and D. Cox, “Space-variant descriptor sampling for
action recognition based on saliency and eye movements.” Florence,
ITA: Springer, Oct 2012, pp. 84–97.

[42] N. Ikizler-Cinbis and S. Sclaroff, “Object, scene and actions: Combining
multiple features for human action recognition.” Crete, GRC: Springer,
Sep 2010, pp. 494–507.

[43] Y.-G. Jiang, Q. Dai, X. Xue, W. Liu, and C.-W. Ngo, “Trajectory-based
modeling of human actions with motion reference points.” Florence,
ITA: Springer, Oct 2012, pp. 425–438.

[44] S. Mathe and C. Sminchisescu, “Dynamic eye movement datasets and
learnt saliency models for visual action recognition.” Florence, ITA:
Springer, Oct 2012, pp. 842–856.

[45] Y. Zhu and S. D. Newsam, “Depth2action: Exploring embedded depth
for large-scale action recognition,” CoRR, vol. abs/1608.04339, 2016.
[Online]. Available: http://arxiv.org/abs/1608.04339

[46] M. Jain, H. Jegou, and P. Bouthemy, “Better exploiting motion for better
action recognition,” Portland, OR, Jun 2013, pp. 2555–2562.

[47] M. M. Ullah, S. N. Parizi, and I. Laptev, “Improving bag-of-features
action recognition with non-local cues,” vol. 10, Aberystwyth, GBR,
Aug 2010, pp. 95–1.

Sameera Ramasinghe obtained the BSc. Engineer-
ing degree in Electronics and Telecommunication
from University of Moratuwa, Sri Lanka in March
2014. He is a co-founder and a research engineer at
ConsientAI, a startup focused on AI technologies.
He is currently pursing a M.Phil. at University of
Moratuwa. Sri Lanka. His current research interests
are machine learning and computer vision.

Jathushan Rajasegaran is currently a 3rd year
undergraduate pursuing a B.Sc. Engineering degree
in Electronics and Telecommunication from Univer-
sity of Moratuwa, Sri Lanka. His current research
interests are machine learning, big data analysis and
data privacy.

Vinoj Jayasundara is currently a 3rd year under-
graduate pursuing the B.Sc. Engineering (Honours)
degree in Electronics and Telecommunication from
University of Moratuwa, Sri Lanka. His current
research interests are machine learning, big data
analytics, machine vision and activity recognition.

http://arxiv.org/abs/1608.04339

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. XX, MONTH 201X 15

Kanchana Ranasinghe is currently a 2nd year un-
dergraduate pursuing a B.Sc. Engineering degree in
Electronics and Telecommunication from University
of Moratuwa, Sri Lanka. He will be graduating in
2019. His current research interests are machine
learning, computer vision, and pattern recognition.

Ranga Rodrigo received the B.Sc. Eng. Degree
(first-class honors) from the University of Moratuwa,
Moratuwa, Sri Lanka, in 2001 and the M. E. Sc.
and Ph. D. degrees from the Western University,
London, ON, Canada in 2004 and 2008, respectively.
He has been with the Department of Electronic
and Telecommunication Engineering, the University
of Moratuwa, since January 2008, where he is a
Senior Lecturer. His research interests are in the
general area of computer vision. He works in feature
tracking, reconstruction, and activity recognition.

Ajith A. Pasqual received his B.Sc. Engineering
degree with First Class Honours from University of
Moratuwa, Sri Lanka in Electronic and Telecom-
munication Engineering in 1993, M.Eng. and Ph.D.
degrees from The University of Tokyo in Computer
Vision in 1998 and 2001 respectively. He is cur-
rently a Senior Lecturer and was a former Head
of Department of Electronic and Telecommunication
Engineering, University of Moratuwa. His primary
research interests are in Application processors, Ma-
chine Vision, Processor and SoC Architectures and

he leads the Reconfigurable Digital Systems Research Group at the University
of Moratuwa which work in the area of hardware acceleration, novel archi-
tectures for application specific processors and SoCs to improve performance
and power efficiency. He is the founder of the first Semiconductor Startup
Company in Sri Lanka Paraqum Technologies which is developing high
performance hardware decoder and encoder for the newest Video Compression
Standard H.265/HEVC and network analytics equipment.

	I Introduction
	II Related work
	III Methodology
	III-A Overview
	III-B Motion Features
	III-B1 Low level motion descriptor
	III-B2 Clustering
	III-B3 Motion Tubes
	III-B4 Histogram Oriented Optic Flows (HOOF)
	III-B5 Bag of HOOFs

	III-C Static Features
	III-D Fusing of Static and Motion Features
	III-D1 Cholesky Transformation Based Method
	III-D2 Variance Ratio Based Method
	III-D3 PCA Based Method

	III-E Capturing Temporal Evolution

	IV Experiments and Results
	IV-A Datasets
	IV-B Contribution of Static and Motion Domains
	IV-C Mathematical Validation of Optimum Contribution
	IV-D Comparison of Fusion Models
	IV-E Comparison with the state-of-the-art
	IV-F Effectiveness of Capturing Time Evolution

	V Conclusion
	References
	Biographies
	Sameera Ramasinghe
	Jathushan Rajasegaran
	Vinoj Jayasundara
	Kanchana Ranasinghe
	Ranga Rodrigo
	Ajith A. Pasqual

