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Abstract

REALTIME MULTI-OBJECT TRACKING AND PIXELWISE SEGMENTATION

Group Members: W M D K N Ranasinghe, S C Liyanarachchi, B M H Jayawardhana,
K D H P Ranasinghe

Supervisors: Dr Ranga Rodrigo, Dr Sadeep Jayasumana

Keywords: Vision, Perception, Detection, Tracking, Panoptic Segmentation, Siamese Net-
work, Conditional Random Field, Recurrent Neural Network, Autonomous Systems.

Bleeding-edge technological pursuits ranging from self-guided robots at the research
stage to mass scale industrial applications such as augmented reality, intelligent security
systems and self-driving vehicles heavily rely on perception through vision. Vision based
perception of the environment in autonomous systems extensively use object detection,
segmentation and tracking as fundamental components. Despite the recent advancements
in deep learning-based object detection on monocular images, several highly publicized ac-
cidents involving self-driving vehicles and critical failures in monitoring systems highlight
the need for significant further improvement on real-time tracking systems in practice. We
identify two such key areas with room for improvement and introduce two separate novel
frameworks to tackle each problem.

We observe that trackers often perform poorly in object dense situations where occlu-
sions and crossovers are prevalent. We identify that in order to perform better in these
scenarios both appearance and motion information should be incorporated. Siamese net-
works have recently become highly successful at appearance based single object tracking
while Recurrent Neural Networks (RNNs) have started dominating motion-based tracking.
Our work focuses on combining Siamese networks and RNNs to exploit both (temporally
varying) appearance and motion information to build a robust framework that can also op-
erate in real-time. We further explore heuristics-based constraints for tracking in the Bird’s
Eye View Space for efficiently exploiting 3D information.

Our segmentation approach is based on one of the most overwhelming problems in
current vision community that has full scale perception on the image, known as panoptic
segmentation where pixel level identification of the entire image is done with both semantic
and instance information thus integrating object classes (thing classes having countable
instance segmentation) and back-ground classes (stuff, amorphous) in a single frame. We
tackle the panoptic segmentation problem with a conditional random field (CRF) model. At
each pixel, the semantic label and the instance label should be compatible and spatial and
color consistency of the labeling has to be preserved (similar looking neighboring pixels
should have the same semantic label and the instance label). To tackle this problem, we
propose a fully differentiable model named Bipartite CRF (BCRF) which can be included
as a trainable first class citizen in a deep network.
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1 Introduction

Ability to track multiple objects simultaneously in real-time along with accurate (pixel-
level) awareness for both stuff (background) and things (objects), are two of the fundamen-
tal vision-based challenges that modern autonomous and quasi-autonomous systems are
faced with. We introduce two separate novel frameworks for both problems which improve
on the current state-of-the-art and integrate them to form a joint ‘perception” model capable

of robust operation in object-dense and chaotic real-world scenarios.

1.1 Problem and Scope

Multi-object tracking has been a critical and unavoidable problem even at the level of cut-
ting edge technology. State of the art multi-object tracking systems are computationally
heavy for the end devices whereas real time tracking systems are performing at the expense
of accuracy and even highly accurate systems [ 1] make errors in general and edge cases like
occlusions, ego-motion, crossovers and rapid/random movements. The occlusions build up
heavy risks in the automobile industry that looks forward for self driving cars. The inability
to predict a pedestrian crossing behind the vehicle that slowed down on the side front or the
incapability of the tracker to distinctly identify two persons at a point of crisscrossing can
lead to critical issues in the field that is chaotic and requires memory other than detection
for producing near intelligent results.

Most of the current systems are based on tracking through detection where the exten-
sive development of efficiency and accuracy in state-of-the-art frame level detectors is used.
The novel idea is to incorporate the temporal aspects into the algorithm due to the seem-
ingly simple fact that objects do not disappear and should follow a time dependent progres-
sion within frame sequence given a satisfactory sampling rate in the sequence. Moreover,
the improvement of depth sensation from both monocular and binocular image feeds [2]
and new methods of inverse perspective mapping [3] build up the capacity to explore 3D
tracking purely based on image data. This is important in the simultaneous localization
of multiple real world objects with the observation of their dynamic aspects for decision
making.

Through this work we develop an online real-time multi-object tracking system for
efficient human and vehicle tracking through the exploitation of appearance and spatiotem-
poral information through a novel Long and Short Term Memory (LSTM) [4] based ar-
chitecture along with the development of possible refinements to three dimensional track

prediction through constraints observed in the Bird’s Eye View (BEV) space.



Figure 1.1: In the above diagram the numbers on the top left represent the frame number
with detection bounding boxes in red and track bounding boxes in other colors. The above
diagram depicts the occlusion handling done by our system. It can be seen that track S(blue)
observed in frame 24 is well tracked through out even after been occluded, given that the
maximum occlusion duration is less than 30 frames. Additionally tracks 17 and 19 (blue
and purple) are reidentified in frame 183 after been occluded. This is because, we control
how much the occluding image’s features can affect the track’s template when the track is
partially occluded

Panoptic segmentation of images is a problem that has received considerable attention
in computer vision recently. It combines two well-known computer vision tasks: semantic
segmentation and instance segmentation. Panoptic segmentation differentiates between two
types of semantic labels: stuff labels and thing labels. Stuff classes are semantic classes
of shapeless regions of similar texture or material such as grass, sky, and road. Thing
classes are semantic classes of countable objects such as people, animals, and vehicles [5].
The goal of panoptic segmentation is to assign a semantic label and an instance label for
each pixel in the image. Clearly, the concept of instances is valid only for thing classes.
Therefore, the instance label of a pixel labeled with a stuff semantic class is neglected.

Although semantic segmentation and instance segmentation are apparently very related
problems, in the current state of the art methods in computer vision, they are solved in
substantially different ways. The semantic segmentation problem is usually solved with
a fully convolutional network architecture such as FCN [6] or DeepLab [7]], whereas the
instance segmentation problem is solved using an object detector based method such as
Mask-RCNN [8]. Each of these architectures have their own strengths and weaknesses. For
example, fully-convolutional network based semantic segmentation methods have a wide
field of view, specially when used with dilated convolutions [9], and therefore can make

semantic segmentation predictions with global information about the image. In contrast,
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Figure 1.2: BCREF in an end-to-end trainable deep net. The Bipartite CRF proposed in
this paper can be used to combine the predictions of a semantic segmentation model and
an instance segmentation model to obtain a consistent panoptic segmentation.

region proposal based networks, such as Mask-RCNN, focus on specific regions of interest
during the later stages of the network and make predictions using strong local features
available within a given region of interest. It is natural to think of a systematic way of
combining the complementary strengths of these two different approaches.

We propose a Conditional Random Field (CRF) based framework for panoptic seg-
mentation. Our framework, named Bipartite Conditional Random Fields (BCRF), takes
inputs from both a semantic segmentation module and an instance segmentation module,
and uses additional prior ideas about a good panoptic segmentation. It then performs prob-
abilistic inference on a graphical model to obtain the best panoptic label assignment given
the semantic segmentation classifier, the instance segmentation classifier, and the image
itself. Our framework provides a heuristic-free, probabilistic method to combine semantic
segmentation results and instance segmentation results - yielding a panoptic segmentation
with consistent labeling across the whole image. We formulate our bipartite CRF using
different energy functions to encourage the spatial, appearance and semantic consistency
of the final panoptic segmentation. The optimal labeling is then obtained by performing
mean field inference on the bipartite CRF - solving for both the semantic segmentation and

the instance segmentation in a jointly optimal way.



Importantly, we show that our proposed BCRF inference is fully differentiable with re-
spect to the various parameters used within the CRF and also the semantic segmentation
and instance segmentation classifier inputs. Therefore, the BCRF module can be used as
a first-class citizen of a deep neural network to perform panoptic segmentation. A deep
network equipped with the BCRF module is capable of structured prediction of consis-
tent panoptic labels and is end-to-end trainable. We show an example application of this
framework and demonstrate that superior results can be used by probabilistic combination
of a semantic segmentation classifier and an instance segmentation classifier in the BCRF

framework.

1.2 Related Work

1.2.1 Single Frame Detectors

A considerable number of new network architectures have been developed for object detec-
tion and classification where growth in accuracy and speed had been the key goals. Out of
the main state-of-the-art systems, the models based on Faster-RCNN [10] that had been de-
veloped from Fast RCNN [[11] use a Region of Interest (Rol) to detect the objects and found
to be highly accurate through the improvements with introduction of Region Proposal Net-
work (Fully Convolutional Network that proposes regions). The single stage detectors like
YOLO [12] (You Only Look Once) network on the other hand have been optimized for
speed over accuracy. They explore the entire image as a whole grid instead of comput-
ing regions of interest and can achieve high performance in frame rate (exceeding 45fps).
For the industry of self driving vehicles and the real-time automated market background
both accuracy and speed are crucial. A notable aspect that each architecture has adopted
to improve performance is approaching localization of an anchor-based classification task
followed by regression as opposed to a purely regression task. This idea will serve as one

of the baselines for our work.

1.2.2  Single Object Trackers

Tracking algorithms move for deep architectures (ex: Fully Convolutional Siamese) that
use deep similarity learning for tracking [[13,14] to solve the key challenges of changes in
lighting conditions, orientation and viewpoint. Extension of these methods to the multi-
object setting is yet to be achieved. Further, some algorithms have been designed to learn
online to track generic objects. However, learning online needs higher computational ca-
pacity at the end device which is not a luxury that could be afforded. The work by David
Held et al. on GOTURN i.e. Generic Object Tracking Using Regression Networks [[15]
depict the capability of achieving 100fps at test time with frozen weights. But their work



is limited to single object tracking.

1.2.3  Joint Tracking and Detection

The novel idea in tracking and video recognition is the ability of improving the detection
and tracking inter-dependently. That is to enhance the detection using temporal information
and improve the track using both detection as well as temporal information. There has been
significant progress in this area too [16,17]. Tracking by detection had been a considerably
successful topic in the field, but this aggregation of the temporal information has turned the
efforts to a different path of exploration that could predict the next level of action which
is steps beyond ordinary tracking. The common idea behind these methods is the usage of
temporally aware feature maps for tackling the task of detection. The key shortcoming is

the lack of direct track outputs which are a requirement for tracking.

1.2.4 Multi-Object Trackers

SORT (Simple Online and Real Time Tracking [18]]) with a deep association metric [1]]
presents an implementation of the Kalman filter for exploiting the temporal information
and a neural network incorporating the detections and deep appearance descriptor. The key
challenge faced by this work is its failure to tackle crossovers, occlusions, and modeling
non-linear object motion. Improvement of the temporal aspect using the LSTMs in single
object setting [[19] has presented promising results in catering to these problems. Further,
the possibility of data association of random cardinality, specifically through the birth and
death of characters (track initiation and termination) using LSTMs alone [19] is equally
promising. The exploitation of multiple fields of view by relating deeper layers in Siamese
networks [20] show the potential of Siamese matching even though it is considerably in-

hibited by the scenarios that have occlusions.

1.2.5 BEV space and 3D tracking

The methods for inverse perspective mapping and 3D detection have been extensively re-
searched as means of depth sensation through both monocular [2, 3] and binocular [2] im-
age feeds. The achievement of accuracy in depth sensation through images has approached
the level of expensive range sensor data to a considerable extent. However, the task of
3D tracking is currently dominated by the algorithms that run on range sensor information
[21].

1.2.6  Panoptic Segmentation

The task of semantic segmentation has historically captured much attention [22, 23] 24, 25]]

with multiple innovations emerging as a direct result [26} 27, 28]]. With the popularity of
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deep convolutional feature extractors, multiple recent works have focused on multi-scale
feature extraction [29, 28, 9, 30] and end-to-end structured predictions [31} 7, 132, 133, 134,
35]] to better solve this task. While the former allows networks to capture objects of all
scales, the latter allows better granularity in outputs. Further, the wider field of view in
these networks, especially since the introduction of dilated convolutions [9, 30], provides
better contextual understanding that directly benefits the task of semantic segmentation.
This greater awareness of global information is a key uniqueness of most recent works.
Also note how multiple approaches based on structured predictions [31} 34} 33, [36]] have
been highly successful in the task of semantic segmentation.

Along with the emergence of high accurate object detection works [37, [38]], instance
specific semantic segmentation started gaining significant attention. Early approaches use
structured prediction based methodologies [39, 40], some often involving CRFs [41, 42].
With the advent of deep learning based approaches, instance segmentation methodologies
have mostly taken the form of two-stage proposal based approaches [43] 44} 45, 146]. These
methods were superseded by Mask R-CNN [8]], laying the foundation for most current
state-of-the-art instance segmentation approaches. Mask R-CNN builds off a conceptually
simple extension of Faster R-CNN [37] obtained by adding a separate object mask predic-
tion branch in parallel to the existing ones, capturing information local to each instance.
This key contrasting feature is common even in later works built off Mask R-CNN [47].
Another similar recent work by Arnab et al. [48] moves in a slightly new direction by using
a CRF to obtain instance segmentation outputs from a semantic segmentation using bound-
ing box (from an object detection network) and instance shape cues. Our work differs from
this in three significant ways: presence of pixel-wise cross potentials, using instance mask
cues from a region-based network, and the ability to explicitly learn and model relation-
ships between classes.

Since its formal introduction by Kirillov et al. [3]], the task of panoptic segmentation
has gained popularity, with multiple works attempting to transform existing network archi-
tectures to tackle this task [49, 50, 51}, 152, 153, 154]. A key feature common among most
of these works is fusing the logit outputs of existing semantic and instance segmentation
networks to obtain a panoptic segmentation using some unique approach. The work of
Arnab et al. [48] which emerged prior to this, may also be considered as an initial step
in this direction. The work by Kirillov et al. [S3] explores extending a feature pyramid
network [S6] based Mask R-CNN [8] to output semantic segmentation as well, followed
by heuristic based fusion to produce a panoptic output. Another similar approach is seen in
the work by Xiong et al. [54] where the outputs are combined using a simple resizing and

addition of semantic and instance logits alongside a method to output additional unknown



labels for difficult pixels. Our work differs from these approaches with the inclusion of a

CREF based layer for combining the two semantic and instance heads.

1.2.7 Conditional Random Fields

Conditional Random Fields (CRFs) are known as excellent models for structured predic-
tion tasks such as semantic segmentation. Early works that used CRFs for semantic image
segmentation includes [41, 42]. Most of these early methods of CRFs for semantic seg-
mentation used 4-connected or 8-connected locally connected graphs. In [57], the authors
proposed an efficient mean field based inference algorithm to solve fully connected CRFs
with Gaussian edge potentials. The authors of [31] later showed that this CRF inference
algorithm can be formulated as a Recurrent Neural Network (RNN). This module, known
as CRF-RNN, was plugged into a fully convolutional network to obtain the state-of-the-art
in semantic image segmentation at the time. Similar trainable CRF models have been used
in works such as [58]], for semantic segmentation with higher-order potentials and, [48]] for
instance segmentation. In [S9]], where the problem of panoptic segmentation with weak and
semi supervision was addressed, the authors used a CRF for refining instance segmentation
labels. However, it worked on homogeneous instance labels only and therefore was similar
in spirit to previous fully connected CRFs.

In our work, we propose a bipartite CRF operating on the semantic segmentation task
and the instance segmentation task simultaneously. This CRF has energies within semantic
segmentation labels, energies within instance segmentation labels, and also energies across
semantic and instance segmentation labels. To the best of our knowledge, this is the first
time a bipartite CRF with cross connections between semantic and instance labels has been

proposed in the context of pixel-wise labeling.

1.3 Method of Investigation

Primary objective is to develop a system for real-time multi-object tracking and segmen-
tation through a novel architecture. This includes having the ability to model the complex
stochastic environments in details pertaining to spatiotemporal aspects, class wise and ob-
ject wise relations and have confident as well as precise throughput that matches the current
state-of-the-art system designs.

The first most approach is the replication of current state of the art systems that have
similar approaches and producing the results as per their description followed by the in-
tegration of our methodology (described in the next chapter) for improvement analysis
through ablation studies and moving towards a coherent system following the requirements

specified in problem statement. Due to the fact that approach considered is a research based



method, extensive experiments were carried out for modular development and testing on

public standard datasets.

1.4 Principal Results of Investigation

The investigation on the multi-object tracker paved the way for developing a tracking net-
work that process both appearance information as well as temporal information on the
video feeds in real time. The investigation showed the capability of novel Long Short Term
Memory (LSTM) modules to robustly adjust to the temporal information and predict the
bounding box locations in the extrapolated frames of a given video (or an image sequence).
Furthermore, the experiments done on the association of data and related predictions re-
vealed the extents to which the novel network could be expanded and possible limitations
(explained in chapters [2 and [3).

The segmentation task revealed the capability of the Bipartite Conditional Random
Field to behave as a module (a single layer that can be plugged to any deep network for
information integration) that provides a probabilistic matching for panoptic segmentation
of the images. The system was tested on datasets and compared to the outputs for current
state of the art systems and revealed that novel methodology works in par with results
of most approaches and can also surpass their results when architectures with bipartite
heads are integrated with our layer which also presents a significant visual development

and smoothening.



2 Methodology

2.1 Overview

The two main core objectives of our work involve in producing an online multi object
tracker, which incorporates the spatiotemporal coherence of object motion together with
the appearance consistency and producing a panoptic segmentation of the video feed by

taking into account the bipartite potentials.

2.2 Multi Object Tracker

In this section, we describe our approach for online real-time multi-object tracking. The
core of our work surrounds three key attributes; an LSTM network tackling track position
estimates as a probabilistic classification problem, a methodology for similarity extraction
and track association that is aware of occlusions, crossovers, and other identified key chal-
lenges and finally, the extension of track predictability to the BEV space exploiting its
properties. Further, we explore the possibility of propagating input uncertainties through
the LSTM network. The naive integration of a generic LSTM network to exploit the tem-
poral aspect overlooks some key aspects of the problem including uncertainty of detection
positions and requirement for estimating a possible region of object presence. To address
this work, we introduce an LSTM network with probabilistic outputs also capable of cap-
turing the input uncertainties. Our final model shown in Figure performs on-par with
current state-of-the-art object trackers and operates in real-time. Our model is tested on
popular tracking datasets, MOT16 [60] and KITTI-tracking [61]]. These two datasets are
from slightly different domains (the former focuses on general indoor and outdoor scenes
while the latter contains videos of roads taken from the perspective of a vehicle). This
allows us to verify that our work solves a generalized tracking problem as opposed to a
single-domain specific solution or being optimized onto a single dataset. Our work is ex-
plained under six subsections. The LSTM network along with our unique contribution is
outlined initially. Then we lay out the appearance similarity usage in a multi-object domain
followed by the track association problem and overall 2D tracker. Finally, we explain the
extensibility of our LSTM model for accurate 3D track prediction and the improvements

gained from BEV space constraints.

2.2.1 LSTM network

Consider a video as a sequence of image frames i.e. V = Iy, Iy, ..., [, where [}, s a ma-

trix of fixed dimensions. Given detections D = Dy, D, ..., D, for the objects present in
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Dense layer (S X P) for anchor confidence on softmax Anchor,regression combined
parameter q € {x,y,w,h} prediction (next §)

Figure 2.1: Structure of the proposed LSTM network

each frame , where each is a list of bounding box locations, class predictions, and other
information corresponding to objects contained in the image , our goal here is to estimate
the bounding box coordinates By, ;; for each object in the following frame; /;;;. Note
that By, ; = (x4, Yk, Pk, Wk,;) Where 2, y, h, w correspond to z, y co-ordinates of centre,
height and width of the bounding box for the i" object in the k" frame. Further, this sys-
tem would operate in an online setting where at any given instance when time ¢ = k, the
frames, hence detections too are present only up to [, and Dy respectively. Further the
i'" object will be consistent across consecutive frames (obtained using the output of the
system) until the object disappears. The LSTM component can be viewed as a function
L with L(Dy, Dy, ..., Dy) = F}, where Fj, is a list of temporally aware feature maps Fj;
corresponding to each object 7 present within Dj. The remaining two functions; C' and R
correspond to classification (selecting anchor) and regression (estimating deviation from
anchor) of the exact bounding box targets. Each bounding box datum (z,y, h, w) is inter-
preted as a deviation from the previous time step (&, ¥, h, w) which reduces the mean of
those variables. Note that due to the discrete nature of data, + =  — x;_; Using normal-
ized co-ordinates (z, y, h, w values divided by relevant image dimensions); this range will
be within (—1, 1) and an optimum number of anchors can be used to estimate this value as
a classification problem.

Having laid down the classifications on to the targets, the required estimates from the
classification function would be a one hot encoded tensor; C,,; of shape (P, 4) for P bins
of anchors and 4 bounding box parameters. In our work, we use four bins; 0, 0.1, 0.5, 0.8
leading to a (4, 4) tensor where the bin closest to the target value (ex: ) on each row would

contain one and the rest zero. Each selected bin is an anchor located at a specific distance
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Figure 2.2: Overview of the overall 2D tracking system

away from the next expected value for the parameter considered. The classification function
can be presented as C'(Fy;) = C,,: The regression function output would be a similarly
shaped tensor R,,;. It is essential for the loss function to consider the nature of both the
classification as well as regression outputs of the network. The overall model of estimator
is illustrated in Figure [2.1] Here intermediate tensor corresponds to the temporally aware
feature maps Fy,; of the i'" object and the system has four similar but separate instances of
the dense layers to handle each parameter and that finally results in outputs C,,; and R,;.
In essence the network estimates how far an object would move from its current position
over the next time step. The x, y components capture motion along the image axes while the
h,w components correspond to the motion along the depth axis as well as morphological
change of the object to some extent.

When training; the loss function is obtained as a weighted sum of the classification and
regression losses. The classification loss LOSS¢ is a simple cross-entropy loss function.
The regression loss takes into account the sparse nature of the ground truth regression

tensor. Here © denotes the Hadamard product of two tensors or matrices.

LOSSe == (Coutyrue © 109(Cou,.,)) (1)
LOSSR = argmagj(coutwed) O] LHuber(Routmeda Routtme) (2)
LOSSTotal = )\C * LOSSC + )\R * LOSSR (3)

2.2.2 Appearance similarity

One of the most challenging problems in this context is handling occlusions. Object track-

ing with the use of a Kalman filter or an LSTM network to handle spatial coherence among
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tracks has been a common approach. However, the uncertainty involved in the track pre-
diction increases when tracks are exposed to prolonged occlusions. Hence it is required to
re-identify occluded tracks. Deep SORT [1] introduces the use of feature vectors to define
an appearance descriptor for the purpose of track re-identification. Results presented in this
work have proven this to be a successful approach. However, this comes with the additional
burden of training a large network for the sole purpose of re-identification of a particular
class of objects. Hence this approach is not versatile for multi-class object tracking or for
online implementation. Our approach has the ability to handle multiple classes of objects
and can be implemented online with ease.

The approach implemented in this paper involves the use of a Siamese network to deter-
mine the appearance consistency of tracks. The Siamese networks described in the SiamFC
[13162]] and SiamMask [14]] works have proven to be highly successful in single object
tracking but have not been incorporated into multi-object tracking yet. It has been trained
on ImageNet datasets for similarity learning and can operate online. Thus, it can give
a class independent measure for appearance consistency of tracks and therefore would be
ideal for track re-identification. The network discussed in SiamFC [62]] extracts the features
of the exemplar image and search image to produce a cross correlation map whose peak
position corresponds to the position of the object in the exemplar image within the search
image. Similarly, we use a Siamese network to produce a similarity measure between two
images of the same size by building up templates through a convolution neural network (a
convolution function as in [62]] shown in template generation step through Figure [2.3))

The cross-correlation map produced by the Siamese network is passed through a simi-
larity function to produce the similarity score, or more accurately an appearance cost. The

similarity function in this context is defined as follows,

Appearance Cost = Aexp(—k Z f(z,y)) (4)

where f(x,y) is the cross correlation value at z, y position in the cross correlation map and

A, k are tunable parameters.

2.2.3 Track Association

The track association is based on the association cost which depends on the appearance
cost (from the Siamese network) as well as a distance metric. The distance metric is the
measurement of how far the detection bounding box is from the bounding box of a track
predicted by the LSTM. The distance metric between two bounding boxes is defined based

on the IOU distance (intersection over union) between the bounding boxes. Let a; ;, ¢; ;, d; ;
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represent the association cost, appearance cost and the distance metric between the ‘"

detection and the j* track.

aij =4 " f s (5)
Kifd; >T

where K is the gating constant and 7' is the gating threshold. Track association is treated
as an assignment problem and is carried out using the Hungarian algorithm [63]] following
very closely the approach discussed in Deep SORT [1]].

2.2.4  Overall online tracking system

The Siamese network for similarity measurement is implemented in two stages. The first
stage involves producing feature maps (templates) for detections in the current frame and
the next stage involves producing cross correlation maps by convolving the detection tem-
plates with track templates and generating an appearance cost matrix between track, detec-
tion pairs in that frame. These two stages have been isolated to improve the efficiency of
the approach.

In a given frame, a crop of the bounding box corresponding to each detection is ex-
tracted. These crops are resized to 127x127 and passed through the first stage of the
Siamese network to generate templates for each detection in that particular frame. These
templates are passed through the second stage of the Siamese network along with the tem-
plates of tracks in order to generate a matrix of appearance costs. This cost matrix is gated
according to the distance metric and subjected to the Hungarian algorithm to obtain track
assignments for the detections.

For matched track, detection pairs; the template of the track is updated using a rolling
average between the track’s current template and the template of the detection which was

matched to it,

temptrack =7 * temptrack + (1 - '7) * tempdet (6)

where 7 is the occluded percentage of the matched detection and defined as the maximum
of the Intersection over Union values (IoU) between the detection bounding boxes and
the bounding box of the matched detection which is one when fully occluded and zero
when the object is fully visible. Therefore, when the matched detection is fully visible, it
replaces the template of the track with the template of the matched detection and when the
matched detection is fully occluded, it does not update the template of the track so as not
to contaminate the template with the features from occlusions.

Deletion of tracks and addition of new tracks is carried very similar to the approach
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Figure 2.3: Association LSTM

carried out in the Deep SORT [1]] work.

2.2.5 Extensibility to BEV space

The seemingly simple but effective fact that ‘overlapping in BEV space projections cannot
happen for the objects detected and predicted in 3D is exploited here through a constrained
optimization problem. This work relates to the possible improvements that could be done

on the system and detailed in[4.3]

2.2.6 LSTM based data association for end to end trainability

The multi object tracker network uses the Hungarian algorithm for data association where
this algorithm is a definite setup having an algorithmic complexity of O(n?). However the
system cannot be back propagated through this implementation due to the fact that Hungar-
ian algorithm is not differentiable. There are approaches from probabilistic view points as
in [64] and with learning perspective as presented in [19] for obtaining a data driven sys-
tem. Several experiments were conducted with data association on MOT tracking dataset
based on the methodology presented in [19]. The system developed is shown in Figure[2.3|
and was designed from scratch using tensorflow API. The system was designed initially to
handle and check the repeated lengthy tracks in the dataset without the intervention of birth
and death processes. Here the system is getting trained to build up a probability matrix A,
which presents associations at time t. Thus Af; = [Pi1sDi2:Di3s - - - s Piims Piom+1) Where p;

represents the probability of i‘" target being denoted by ;' measurement out of m mea-
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surements for the frame (i.e. m detections). Here Z;’;l pi,; = 1 which is achieved by

using softmax on the row.

The excess column presented by the last probability shows the probability that none
of measurements being matched for the respective track and this track will potentially be
terminated in next stages of the process. The input C; € RM*M is the matrix created
through the second norm between the state vector z; of the target and the measurement
having feature vector z;. Therefore, Cf’j = x; — zj2

Negative log likelihood loss was used as the loss function for training.

2.3 Panoptic Segmentation

Our work is concentrated to the assignment of a semantic label and an instance label for
each pixel in an image using a novel approach of incorporating bipartite potentials to im-

prove the segmentation accuracy.

2.3.1 Background: Conditional Random Fields

Conditional Random Fields (CRFs) are a class of statistical modeling method used for
structured prediction. A CREF, used in the context of pixel-wise label prediction, models
pixel labels as random variables that form a Markov Random Field (MRF) when condi-
tioned upon the image. CRFs have primarily been used in computer vision for semantic
image segmentation. In this setting, CRFs encourage the desirable properties of a good
segmentation, such as the spatial consistency (e.g. spatially neighboring pixels should have
the same label) and color consistency (e.g. a semantic segmentation boundary should corre-
spond to a edge in the image) through various energy functions used in the formulation. A
CREF formulation usually has energy terms arising from an imperfect classifier (sometimes
known as the unary energy) and energy terms encouraging the consistency properties of the
segmentation (sometimes known as the pairwise energy). Some semantic CRF models also
include higher order energy terms to encourage higher order consistency properties such as
consistency of the labeling within super-pixels [58]].

Once an appropriate energy function is formed, the optimal labeling is found as the
labeling that minimizes the CRF energy (or equivalently, maximizes the probability). This
is known as the inference of the CRF. The exact inference of a CRF with dense pairwise
connections is intractable and hence approximate inference methods such as mean field
variational inference has to be utilized to solve the CRF in reasonable time [57]]. For a
detailed treatment of CRFs, the reader is referred to [65]].
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2.3.2  Bipartite CRFs

We propose a CRF formulation with bipartite random variables to capture interactions be-
tween semantic labels and instance labels. Inference of this CRF gives the jointly most
probable semantic and instance segmentation (and therefore, the panoptic segmentation)
for a given image.

For each pixel i, define a pair of discrete random variables (X, Z;) to denote its se-
mantic label and the instance label, respectively. For each i, X; can take values in £ =
{l1,15,...,1.}, where each [; is a semantic label and L is the number of semantic labels
(includes both stuff and thing classes). Therefore, £L = Lgug U Lihings, Where Lgpug 1S
the set of stuff class labels and Linings the set of thing class labels. Similarly, for each 1,
Z; can take values in 7 = {instg, insty, ..., inst s}, where N inst is the number
of instances detected in the image, and the label insty is reserved to represent the “no
instance” case (the pixel belongs to a stuff class).

Let X = [X1,Xy,...,Xn|]and Z = [Z1, 75, ..., Zy], where N is the number of the
pixels in the image. A joint assignment (x,z) to these two random vectors (X, Z) gives
a unique semantic label and an instance label to each pixel i, and therefore represents a
panoptic segmentation of the image. Note that, x € £~ and z € TV. In this work,
we discuss the probability of such assignments and formulate the probability distribution
function so that the “good” panoptic segmentation will have a high probability. We then
perform inference on this formulation to find the assignment that maximizes the probability
to obtain the best panoptic segmentation.

The probability of a panoptic segmentation (X, z), given the image I, can be modeled

as a Gibbs distribution of the following form:

PriX=x,Z=z|I) = exp(—FE(x,z|I)), (2.1)

1
Z(I)
where Z(I) = >, , exp(—E(x,z|I)), is a normalization constant, sometimes known
as the partition function. The term F/(x,z|]) is known as the energy of the configuration
(x,z). Hereafter, we drop the conditioning on [ in the notation for brevity. The energy of

our bipartite CRF is defined as follows:
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where x; and z; are the elements of the vectors x and z, respectively. The meaning of each
term will be described in detail below. Note that, since a “good” panoptic segmentation
should have a high probability, it should have a low energy. Various terms in Eq. (2.2))
should therefore encourage a good panoptic segmentation by penalizing disagreements

with our prior knowledge about a consistent panoptic segmentation.

2.3.3 Semantic Component of the CRF

In the following, we discuss the first two term of the energy function in Eq. (2.2)). The first

term encourages the semantic segmentation result to be consistent with the initial classifier.
o(X; = ;) = —log(Pro(X; = x;)), (2.3)

where Pr(.) is the classifier probability score for the semantic segmentation.

The second term in Eq. (2.2) encourages the smoothness of the semantic labeling:
O(X; = x5, Xj = x;) = p(wi, ;) Sima (4, J), (2.4)

where 1 : £ X £ — R is the label compatibility function, and Simg (4, 7) is a similarity
measure between the pixels ¢ and j. This term penalizes assigning different labels to a pair
of pixels that are “similar”. Following [S7], we use a mixture of Gaussians as the similarity

measure. Therefore,

204, m

)

16" — 6"
Simg (4, J) Z Wemexp | ————L— (2.5)

where f; is a feature vector for pixel ¢ containing information such as its spatial location
and bilateral features (RGB + spatial coordinates). We use the same spatial and bilateral

features used in [57]].
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2.3.4 Instance Component of the CRF

For the instance classification, we also assume the existence of an initial classifier, such
as Mask R-CNN, that provides a confidence score for each instance at each pixel. Note
that Mask R-CNN provides fixed-size instance segmentation predictions with respect to
the bounding boxes of the detections. However, these predictions can be easily mapped to
the full image by using bilinear interpolation and trivial coordinate transforms.

In the following, we use z; € {instg, insty,...,insty inst}, where N inst is the
number of instances detected in the image. The label inst is reserved for the special case
where the pixel does not belong to an instance, i.e., it belongs to a stuff class.

Similar to the semantic segmentation case, the third term in Eq. encourages the

panoptic segmentation to be consistent with the instance classifier probabilities Pry:

The fourth term in Eq. (2.2)) encourages instance label consistency across the whole
image by penalizing assigning different instance labels to similar pixels:

The compatibility transform in this case is fixed to be [z; # z;], where [.] is the Iverson

bracket. The similarity measure Simy has a similar form to Eq. (2.5).

2.3.5 Cross Potentials in the CRF

An important contribution of this paper is the introduction of cross potentials between
the semantic segmentation and instance segmentation. The semantic segmentation and the
instance segmentation are highly related problems and therefore the solutions should agree:
the semantic label at any pixel has to be compatible with the instance label at that pixel.
For example, if the instance labeling says that the pixel 7 belongs to an instance of a person
class, the semantic label at pixel 7 should also have the person label. If the initial classifier
results for the instance segmentation and the semantic segmentation do not agree, one of
them should correct itself depending on the interactions of other terms in the CRF.

The first cross potential term (the fifth term in Eq. (2.2)), encourages instance label and

the semantic label at a given pixel to agree:
W(Xz = T, Zz = Zz) = f(l’z, Cl&SS(Zi». (28)
Here, class(z;) is the class label of the instance z; with inst, mapped to a special class
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null. Note that, for all valid instances, the class label can be obtained from the instance
classifier (e.g. Mask R-CNN). The function f(.,.) : (£, Linings U {null}) — R, captures
the cost of incompatibility and is defined as follows:

0, if z; = class(z;)
[z, class(z;)) = 0, if 2 € Ly and class(z;) = null (2.9)

n(z;, class(z;)), otherwise.

The above function covers three cases: 1) If the semantic label and the class label of the
instance label match, there will be no penalty for such assignment since there is no incom-
patibility in this case. 2) If the semantic segmentation assigns a stuff label and the instance
segmentation assigns inst label, there will be no penalty in that case either. 3) If the
semantic label and the instance label mismatch, there will be a penalty with the magnitude
decided by the function 7(., .) : Linings U {null} X Lipings U {null} — RF. This function is
learned from data as described in Section

The last term in Eq. (2.2)), encourages the consistency of semantic label and the instance

label among similar looking pixels and has the form:
QUX; =u;, Z; = zj) = f(x;,class(z;)) Simg(, j), (2.10)

where each symbol has the meaning described above.

2.3.6 Inference and Parameter Optimization

The best panoptic segmentation given the model described in Section [2.3.2]is the assign-
ment (X, z) that maximizes the probability in Eq. (2.1)). However, since the graphical model
used in BCRF has dense connections between the pixels, the exact inference is infeasible.
We therefore use an approximate parallel mean field inference algorithm following [57]].
In this setting, the joint probability distribution is approximated by the product of

marginal distributions:
PriX=x,Z=12)~ H Qi(x:) Ri(z:), (2.11)

where Q;(z;) = Pr(X; = x;) and R;(z;) = Pr(Z; = 2;) are the marginal distributions. Out
of all the distributions that can be written down in this factorized form, the closest distri-
bution to the original joint distribution is found by minimizing the KL divergence [65, 57].

For our BCRF formulation, this results in the iterative algorithm detailed in Algorithm |}
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To make our model flexible, we deliberately include a number of parameters in the
BCRF model, which we automatically learn from the training data. More specifically, the

BCRF model has the following parameters:

1. Weight multipliers for different energy terms: each term in Eq. is multiplied
with a weight parameter, which decides the relative strength of the term. This pa-
rameterization helps learn the optimal combination of different energies in the CRF.
For example, if the initial semantic segmentation model has better accuracy than the
instance segmentation model, the ¢ unary energy might be weighted more than the

1) unary energy.

2. Parameters for similarity functions: Each similarity function Simx (7, j) of the form
shown in Eq. (2.4)) has its own parameters. These learn the relative strength of spatial

and appearance consistency of the panoptic segmentation.

3. Label compatibility matrices: The two functions (., .) and 7(.,.) are initialized to
have a zero cost for a pair identical labels and a fixed cost for any combination of two
different labels. They are then given the freedom to automatically learn the relative

penalty strengths for different label combinations.

2.3.7 BCRF in a Deep Network

In this section, we discuss how BCRF can be used in a deep network. In [31]], authors
showed that, in the semantic segmentation setting, mean field inference of a CRF with
Gaussian pairwise potentials can be formulated as a Recurrent Neural Network (RNN).
Since our BCRF also uses an iterative mean field algorithm of similar nature, it is readily
adaptable into the RNN based inference described in [31]. Therefore, BCRF can be a first-
class citizen of a deep network performing panoptic segmentation. Importantly, this formu-
lation allows automatic optimization of the BCRF parameters described in Section [2.3.6]
using backpropagation and a gradient descent algorithm such as stochastic gradient descent
(SGD). This is a major advantage since it allows us to increase the number of parameters
used in BCRF, and hence increase its flexibility, without adding to the burden of manual
parameter optimization.

In the current state-of-the-art methods, semantic segmentation and instance segmen-
tation are solved with different network architectures with complimentary strengths. The
BCREF formulation given a systematic way of combining these strengths in a probabilistic
framework. Such an example usage of BCRF is shown in Figure The CNN feature
extractor here can be a common backbone network such as ResNet-101 or ResNeXt. The

semantic segmentation branch is usually a fully convolutional network that is capable of
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seeing a wide field of view, where as the instance segmentation branch is a region-proposal
based network such as Mask R-CNN. The semantic segmentation branch’s output is taken
as the ¢ unary potential input to the BCRF, and instance segmentation branch’s output as
the v unary potentials. In addition, the raw image is also fed into the BCRF to derive the
similarity functions Simx (., .) using the pixel locations and the RGB values.

During the training of the network, in the forward pass, BCRF inference is performed
using Algorithm |1} A suitable loss function for panoptic segmentation can then be used
at the output of the network. In the backward pass, differentials with respect to the loss
function will be passed into the BCRF inference to optimize various parameters used in the
BCRF model. Importantly, during the backward pass, after BCRF inference, the error dif-
ferentials can be passed on to the semantic branch and the instance branch both to optimize
their parameters, and subsequently, the feature extractor CNN’s parameters. Therefore, the

whole network, including the BCRF component, can be jointly trained.

21



3 Results

We obtain results for our two sub-tasks on selected popular datasets. The results are re-

ported using standard metrics commonly used to evaluate these tasks.

3.1 Multi Object Tracking Evaluation

3.1.1 Datasets and Evaluation metrics

Experiments are conducted on the MOT16 [60] and KITTI [61] tracking datasets. The
MOT16 dataset contains 7 videos in its training set. The KITTI tracking dataset contains
21 videos in its training set. The Siamese Network for appearance consistency is trained
completely on external data (ImageNet datasets) and there is no overlap with any of the
MOT16 or KITTI data. The LSTM network is trained only with the use of bounding box
locations of objects and class information for a partition of the training sets of these two
datasets (the remainder is kept aside for testing purposes). Results are reported for our test
partition (in the case of LSTM usage) and for the entire datasets (in cases they are not used
for training).

Evaluation of our system is carried out for the entire system as well as for the study
of LSTM network alone. For the case of the entire system, we consider the metrics used
by the MOT benchmarks for evaluation. This includes Multiple Object Tracking Accuracy
(MOTA), Multiple Object Tracking Precision (MOTP), the ratio of Mostly Tracked targets
(MT), and the ratio of Mostly Lost targets (ML). In the case of the LSTM network, the
Average Precision (AP) value for the predicted frames across the dataset and classes is

reported.

3.1.2 Evaluation

The evaluations on the MOT16 Dataset for the end to end system are reported in Table I.
Evaluations mainly focus on two aspects: improvement in accuracy with the introduction
of the similarity measure to a traditional tracker using only a Kalman filter or an LSTM
network and how closely related the accuracy is with state of the art multi-object trackers.
Similar results on the KITTI tracking dataset are presented for our work alongside com-
parisons (note that few state-of-the-art works report on this dataset) in Table II. Separate
evaluations for the LSTM in the case of single object tracking for individual tracklets in the
KITTI dataset was carried out. An average IoU of 61.45 and AP of 0.96 at 0.5 IoU were
obtained for this experiment.
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Table 3.1: Comparison of our performance on MOT16 dataset with recent works

Method Mode MOTAT || MOTP?T | MT? ML|
Deep SORT [1] ONLINE || 61.40% || 79.10% || 32.80% | 18.20%
SORT [18] ONLINE || 59.80% || 79.60% | 25.40% | 22.70%
RNN LSTM [19] ONLINE || 19.00% | 71.00% || 05.50% || 45.60%
MDP [66]] ONLINE || 30.30% || 71.30% || 13.00% | 38.40%
DMAN [67] ONLINE || 46.10% || 73.80% || 17.40% | 42.70%
LSTM+Similarity (Ours) || ONLINE || 66.70% || 69.00% | 39.18% | 16.80%
Kalman Filter (Ours) ONLINE || 61.00% || 69.00% | 17.00% | 17.00%

Table 3.2: Comparison of our performance on KITTI-trracking dataset with recent works

Method Mode || MOTAT || MOTPT || MTT | MLJ
Regionlets Only [68] ONLINE || 76.40% || 81.50% || 54.10% || 9.30%
MS-CNN Only [68] ONLINE || 81.23% || 85.60% || 66.30% || 4.60%

Regionlets MS-CNN [68] || ONLINE || 82.60% || 85.00% || 70.50% || 5.30%
SMES [69] ONLINE || 70.78% || 80.38% || 51.68% || 7.77%
LSTM + Similarity (Ours) | ONLINE || 83.58% || 78.50% | 48.23% | 2.25%

3.1.3  Experiments to analyze the extensibility of the modules

LSTM based data association for end to end trainability: The LSTM network was trained
under negative log likelihood loss. It was observed that network was not developing a
significant convergence even for a fixed set of data associations which was also the key ex-
pectation. This methodology is trainable but in comparison to the results from the Hungar-
ian algorithm, the associations are sub-optimal and have a significant potential of resulting
in non-coherent results (similar to observations at the training phase) which deprecate the
accuracy of the entire system henceforth. The results being inconsistent as well as non-
coherent and the observation that training sessions do not converge to a feasible setting
made this sub module unsuccessful in terms of performance.

Feature Predictor: The feature space is significant in every novel approach considered
in the fields of vision based analysis where tracking is only a sub group of it. Along with the
ability of the LSTM networks to perform well in prediction, and as model predictors used
in current trackers perform linear interpolation of the feature tensors, an experiment on the
ability of a trainable network to predict the feature space was conducted (generic interpo-
lation of features is done in most of the Siamese tracking networks and they are proven to
perform well in practice). During this analysis, a robust LSTM network with high hidden

state size was trained on the extracted features in sequences. (Ability to compare a com-
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Figure 3.1: Convergence of BCRF Inference. Convergence of KL divergence with the
number of iterations.

plete feature vector can be integrated for optical flow analysis and many further approaches
if turns out to be successful). However the feature predicting network was over fitting to the
dataset (custom) during the training phase. The accuracy of the tests for network validation

was poor and turned out insufficient for any further analysis.

3.2 Panoptic Segmentation Evaluation

In this section, we first show the convergence of the mean field based inference algorithm
for BCRF and then show the usefulness of the BCRF model by evaluating its performance
on the Pascal VOC dataset and the COCO dataset.

3.2.1 Convergence of the Inference

It is difficult to provide a theoretical convergence guarantee for mean field algorithms with
parallel updates [70, |65]. We therefore provide empirical evidence to show that the pre-
sented mean field inference algorithm for our BCRF with cross potentials converge under
normal conditions. To this end, we estimate the KL divergence between the original joint
distribution and the factorized distribution (see Eq. (2.11))), at the end of each iteration in
Algorithm [I] Note that this KL divergence can be estimated up to a constant using the
method described in [71]. We pick 20 random images from the Pascal VOC validation
set and average the KL divergence for each iteration across these images. The resulting
plot is shown in Fig. It can be seen that the KL divergence measure, and therefore the
inference algorithm, converges within a few iterations. We also note that visual results do

not change after about 5 iterations.

3.2.2 Bipartite Potentials Learning

Figure [3.3]illustrates how important logits belonging to each class in the instance branch

are for predicting each class in the semantic branch when the model has been fully trained.
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Method PQ SQ RQ
DeeperLab [72] | 67.35 - -
Ours (baseline) | 70.50 | 88.65 | 78.83
Ours (CRF only) | 67.72 | 87.62 | 76.48

Ours (BCRF) 71.76 | 89.63 | 79.33

Table 3.3: Comparison of results on Pascal VOC dataset. The baseline used contains
DeepLab-v3 for semantic branch and Mask-RCNN for instance branch followed by com-
bination using the simple logical method outlined in [S]. CRF only corresponds to setting
the BCRF cross-potential terms to zero. BCRF is our complete network.

Our BCRF module allows the network to learn complex relationships between the semantic
and instance features belonging to each class. While there is room for it to learn a simple
logical relationship, the variation of learned parameters in Figure[3.3|verifies that a complex

class-specific mapping has been learned by the network.

3.2.3 Results on the Pascal VOC Dataset

In this experiment we use the architecture shown in Figure and CNN components sim-
ilar to the ones used in [54]. More specifically, we use a ResNet-50 with an FPN as the
backend, to which we attach a fully convolutional network as the semantic segmentation
head and a Mask R-CNN network as the instance segmentation head.

During both training and inference we used 5 mean-field iterations for BCRF. At the
output, we calculate the loss function as a summation of two components: the usual pixel-
wise categorical cross entropy loss for the semantic component [26] and the loss used
in [48] for the instance component. We used full-image training with batch size 1 and SGD
with learning rate 0.0007 and momentum 0.99. In Table [3.3] we report the summary of the
quantitative results. Table[3.4]shows the class-wise results. Qualitative results are shown in
Table where benefits of optimally combining the semantic segmentation classification

and instance segmentation classification with BCRF can be seen.

3.2.4 Results on the COCO Dataset

To further evaluate the usefulness of BCRF without any efforts for end-to-end training,
experiments were conducted on the COCO dataset by simply plugging in the BCRF on an
existing pre-trained model. We used a combination of publicly available models of [[54} 73],
which produced a PQ score of 41.4% on the COCO validation set. The parameters of the
BCRF were hand-tuned using a small subset of train images. Results obtained from that
BCRF model without end-to-end training are listed in Table
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PQ SQ RQ
Class W/O BCRF | BCRF | W/O BCRF | BCRF | W/O BCRF | BCRF
Background 90.8 92.33 93.39 94.69 97.22 97.51
Aeroplane 78.55 80.37 88.57 92.6 88.68 86.79
Bicycle 29.78 31.71 67.36 68.46 4421 46.32
Bird 84.98 85.09 93.05 93.24 91.32 91.25
Boat 65.83 66.21 85.33 86.48 77.14 76.56
Bottle 67.44 64.05 92.05 90.68 73.26 70.63
Bus 82.68 82.58 94.56 95.46 87.44 86.51
Car 7222 70.93 93.69 91.7 77.08 77.35
Cat 77.41 83.4 91.24 93.73 84.85 88.97
Chair 433 41.79 82.5 82.64 52.49 50.57
Cow 76.91 80.42 92.81 93.95 82.87 85.6
Diningtable 51.33 51.8 80.81 82.88 63.51 62.5
Dog 76.63 81.59 90.5 93.29 84.67 87.46
Horse 76.86 81.4 89.38 9111 86 89.34
Motorbike 78.07 80.21 87.5 89.89 89.23 89.23
Person 76.33 77 89.75 89.73 85.05 85.81
Pottedplant 58.98 60.62 85.41 85.32 69.06 71.05
Sheep 74.29 74 93.86 93.48 79.15 79.15
Sofa 60.37 62.12 88.47 89.5 68.24 69.41
Train 78.52 80.05 88.7 90.43 83.52 88.52
Tvmonitor 79.23 79.34 92.8 92.93 85.38 85.38
Mean Value 70.5 71.76 88.65 89.63 78.83 79.33

Table 3.4: Pascal VOC dataset. Detailed class-wise panoptic segmentation results on the
Pascal VOC validation set comparing results without BCRF vs with BCRF on a standard
network.

3.2.5 BCREF learns beyond simple logical mapping

Figure illustrates how important logits belonging to each class in the instance branch
are for predicting each class in the semantic branch when the model has been fully trained.
Our BCRF module allows the network to learn complex relationships between the semantic
and instance features belonging to each class. While there is room for it to learn a simple
logical relationship, the variation of learned parameters in Figure[3.3|verifies that a complex

class-specific mapping has been learned by the network.
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Table 3.5: Visualizations on Pascal VOC. Example images from the Pascal VOC vali-
dation set. Columns left to right: original image, semantic output before BCRF, instance
output before BCRF, semantic output after BCREF, instance output after BCRF. Each row
contains a new image. The standard Pascal VOC color map is used for the semantic seg-
mentation results.

PQ SQ RQ
Category | W/O BCRF | BCRF | W/O BCRF | BCRF | W/O BCRF | BCRF | Classes
All 414 41.7 78.3 79.1 50.8 51.1 133
Things 474 47.4 80.4 80.4 57.3 57.3 80
Stuff 32.5 33.2 75.1 77.1 40.9 41.6 53

Table 3.6: COCO dataset. Panoptic segmentation results on the COCO validation set.
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Figure 3.2: Visualisation of improvements on COCO Dataset
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Figure 3.3: The heatmap illustrates inter-class dependencies learned by the cross-potential
term weights of BCRF. Note that a logarithmic scale has been used.
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4 Discussion and Conclusion

We propose two components essential for autonomous systems that interact with their sur-
rounding environments. These are in fact two of the key computer vision problems that
have been attempted for a long time.

Firstly, we present an end-to-end system capable of performing multi-object tracking by
combining a range of advances in object detection and reidentification along with our novel
architectures and loss functions. Further, we work on a novel step by building a separate
LSTM branch to estimate the similarity feature map for the next time step of a given track.
The Siamese Networks may be viewed as a two-step version of our extension, whereas
this replacement with an LSTM is more of a generalized version capable of generating
a better feature set. The key expectation with this addition is the overcoming of identity
switches and lost tracks in the case of occlusions. Appearance features tend to change
significantly during an occlusion, especially when an object undergoes rotations, and our
extension overcomes this by modeling the appearance changing pattern over time.

Thereafter, we proposed a probabilistic graphical model based framework for panop-
tic segmentation. Our CRF model with two different kinds of random variable, named
Bipartite CRF or BCREF, is capable of optimally combining the predictions from a seman-
tic segmentation model and an instance segmentation model to obtain a good panoptic
segmentation. We use different energy functions in our BCRF to encourage the spatial, ap-
pearance, and instance-to-semantic consistency of the panoptic segmentation. An iterative
mean field algorithm was then used to find the panoptic labeling that approximately maxi-
mizes the conditional probability of the labeling given the image. We further showed that
the proposed BCRF framework can be used as an embedded module within a deep neural

network to obtain superior results in panoptic segmentation.

4.1 Principles, Relationships and Generalizations inferred from results

As depicted in the results section, our tracker has shown improvements basically in rela-
tion to MOT evaluation metrics. The improvements presented based on the KITTI dataset
(which has 9 separate classes) shows how our system has generalized multi class track-
ing without the need for training separate computationally expensive re-identification net-
works. MOT16 contains data belonging to the pedestrian class only but the movement of
objects in this class is subjugated to more occlusions and random movements compared to
the KITTI dataset. The improvement of MOTA over MOT16 dataset indicates signs that

our system handles occlusions better. It is also evident not only through the dataset statis-
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tics but also through the visual online videos that our system has less number of lost tracks
in the middle of a certain scenario.

In panoptic segmentation, the results depict the principle analysis that bipartite con-
ditional random fields propose an improved labeling in both semantic as well as instance
domains where initial unary potentials for semantic and instance identities are taken from
unary classifiers that are state of the art systems at present. The results also show that the
cross potential component of the aggregated energy function that is being minimized during
an inference has effects beyond rest of the energy function with both semantic component
and instance component separately. The improvements observed in the Panoptic Quality
are also visually consistent with intuition that stray patches of the final output have mostly
been removed and the edges of objects have been smoothened. The final output when split
and analyzed semantically and instance wise; the qualitative results present the consistency

and clarity in comparison to the unary classifier outputs.

4.2 Problems and Exceptions to the Generalizations

The results show that MOTP of our tracker is considerably low in MOT16 dataset in com-
parison to other systems. This indicates that the LSTM network is unable to handle rapid
variations of the bounding box parameters. This is to be expected as the bounding box
variations in datasets such as MOT16 is extremely chaotic in cases where the pedestrian
is rotating while walking and moving in general. This is also due to the morphological
changes of the moving body specifically a bounding box is not an ideal interpretation of
the object. The hand gesture changes are also changing the bounding box co-ordinates of
the object considered. However this complication does not arise for the cases where auto-
mobiles are considered. It was also observed that system has higher performance in time
domain when automobile motion is considered.

The system implemented for panoptic segmentation through the aggregation of two
separate heads built for semantic and instance segmentation having state of the art accuracy
builds up a compatibility matrix that compares the class wise cross compatibility of the
instance and semantic classes. This learns the entry matrix elements from the dataset.
However if the dataset is biased for say person class (As in the case of Pascal VOC); there
is a tendency of having arbitrarily high compatibility which is dataset dependent. This can
be avoided by using large datasets which are robust however that training task requires

considerable computational resources.

4.3 Agreements/Disagreements with previously published work

The results agree with recently published systems such as Deep SORT [1]. It is expected

that as ML decreases when MOTA increases as it reduces the number of false negatives
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considerably. This correlation is depicted in our results. However the experiments that had
been run basing the data association LSTM network did not turn successful as presented
in [60]. However in [60] it describes as a network not promised to have high accuracy but
possesses higher frame rate in comparison to the accuracy. As a result, the lack of data
association capability and the retarded smoothness in convergence could be expected when
single module is isolated from the aforementioned network and tried to train starting from
Xavier initialization.

We were able to replicate the recent most state of the art systems to obtain the unary
classifications on image segmentation. The approach followed by our system agrees with
the work published by authors in [31]] for refining the output of a single head semantic
segmentation network using conditional random fields. Our system was integrated on top
of a state of the art system presented in [76]. We used the loss function presented in [48]

for training.
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Appendix I

Ability to track multiple objects in BEV space and the possible usage of heuristics in BEV
space is explained here as an extension of the single image based tracking method pre-
sented earlier.

Extensibility to 3D tracking

Here we use the concept that objects cannot overlap in Bird’s Eye View space. An LSTM
network is trained to predict the change of parameter ‘q’ between consecutive frames. That
is, for given ¢;" g, ..., q; 1, G — q¢y1 is predicted where , = ¢; — ¢;—1 and ¢ € (C, S, 0).
Here;C = C,, C,, C, (the centre co-ordinates of the object), S = (h,w, ) (object dimen-
sions) and 6 is the angle of rotation around the vertical axis. The loss function for training
the parameter predictor (LSTM) is as follows.

LOSSpred(p) /87 «, 5) 9) =

N
Z ﬁclassi ( ( Z apLHuber,6p (ppredy pgt)) +
=1

pe(C,S)

aeLO(epreda egt)object:i> (7)

Here P,,.q refers to the predicted parameter and Py, refers to the ground truth parameter.

d, is a parameter based learnable which in turn is the quadratic-linear margin of the
Huber loss function and «y, or ag is a regressed parameter based learnable (where in the
case of oy, the regressed parameter is ¢ and o, is similarly interpreted whereas the scope
of o, is different from that of ¢,,, considering the impact on cost function) and S,ss; is the
class based learnable parameter w.r.t. the class of the i object.

Here, p = C,,C,, C,, h,w,l , B = Beaass|class € classes, a = [[ay]peparameters, o)
and 0 = [5p]p€pa'rameters-

Due to the discontinuous nature of the parameter ¢ at the two extreme ends of its domain
[—7, 7], and due to the fact that # = 7w and § = —r depict the same orientation, it is
not directly incorporated into the Huber loss function. It is handled separately using Ly
function [74], where 0,,.q, 0, are predicted and ground truth values of the parameter 0
respectively.

Lg(nged, Qgt) = 05(1 - COS(Qgt - (‘)pred)) (8)

Constraints as penalties

First, we introduce the hard constraint on BEV space that projections of the objects on to
the x-z plane in general co-ordinates have no intersection. However, most of the research is
focused on building up 3D bounding boxes of objects where the rectangular projection does
not create a clear cut segmentation of the object (ex: human) on BEV space. Therefore, we

38



minimize an additional term as follows.

I = Z (1 + gglassi,classj)<UiBEV N UjBEV) (9)

v3,vj €objectspred,iF£]

Where v; ., 1s the projection of the bounding box of the object v; onto the BEV space and
&classi,classj 15 @ learnable based on object classes under intersection which in turn forms a
set &assxclass and each term is squared to ensure positivity. Therefore, the final minimiza-
tion function is as follows,

L(paﬁa a75707{§}> = LOSSPTCd(pHB’O'/75’ 0)+I (10)

However, at an optimum point (p*, 8*, a*, 0%, 6*, {£}*); the loss function obeys a feature
observed in Lagrange constrained optimization that; VL = 0 where V refers to the discrete
derivative (this statement is intuitive only with the discrete derivative).

This implies that:

VP,HLOSSPTed = _(1 + fglassi,classj-)Vpﬁ(UiBEv N UjBEV) (11>

for all classes at optimum parameters p*, §*. Therefore (1 + fflassi,dassj) behaves similar to
a Lagrange multiplier. This setting helps to build up a network that trains not only based
on the individual performance per object but also encountering the joint effect of multiple
object scenarios.
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Appendix I1

Mean Field Algorithm

Algorithm 1 Inference on Bipartite CRF

1: Q;(1) := softmax;(—¢;(l)) and R;(t) := softmax;(—;(t)) > Initialization
2: while not converged do
3: Q1) —= ¢4(1) > Update due to the first term
4: Qi(l) == yer <u(l, I') 34 Sima (i, §) Qj(l’)> > Update due to the second
term
5: Ri(t) —= ;(t) > Update due to the third term
6: Ri(t) == yer <[t # '] > Simy (i, ) Rj(t’)> > Update due to the fourth
term
7 Qi) == Yooy (U, class(t) Ri(t))
8 Ri(t) ==Y "icr <f(l, class(t)) Q;(l )) > Updates due to the fifth term
01 QU —= Loy (S class(t) 3, Simali, j) By (1))
100 RY(t) —= Y, ( f(1, class(t) 3, Sima(i, ) Qj(z')> > Updates due to the
sixth term
11: Qi(l) := softmax; (Q;(l)) and R;(t) := softmax; (R;(t)) > Normalization

12: end while
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Appendix II1

List of Publications
e Extending Multi-Object Tracking systems to better exploit appearance and 3D infor-

mation

e Bipartite Conditional Random Fields for Panoptic Segmentation
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