

Orthogonal Projection Loss

Kanchana Ranasinghe, Muzammal Naseer, Munawar Hayat, Salman Khan, Fahad Shahbaz Khan

Code publicly available: https://kahnchana.github.io/opl

We propose a novel loss function

Task	Dataset	Baseline	OPL	Metric	
Classification	CIFAR-100	72.40%	73.52%	acc@1	
Classification	ImageNet	78.31%	79.26%	acc@1	
Few Shot Classification	CIFAR-FS	71.45%	73.02%	1-shot	
Few Shot Classification	Shot Classification MiniImageNet		63.10%	1-shot	
Few Shot Classification TieredImageN		69.74%	70.20%	1-shot	
Few Shot Classification	MetaDataset (avg)	71.4%	71.9%	varying shot	
Domain Generalization	PACS (avg)	87.47%	88.48%	acc@1	
Label Noise	CIFAR-10	87.62%	88.45%	acc@1	
Label Noise	CIFAR-100	62.64%	65.62%	acc@1	
Adversarial Robustness	CIFAR-10	54.92%	55.73%	acc@1	
Adversarial Robustness	CIFAR-100	28.42%	30.05%	acc@1	

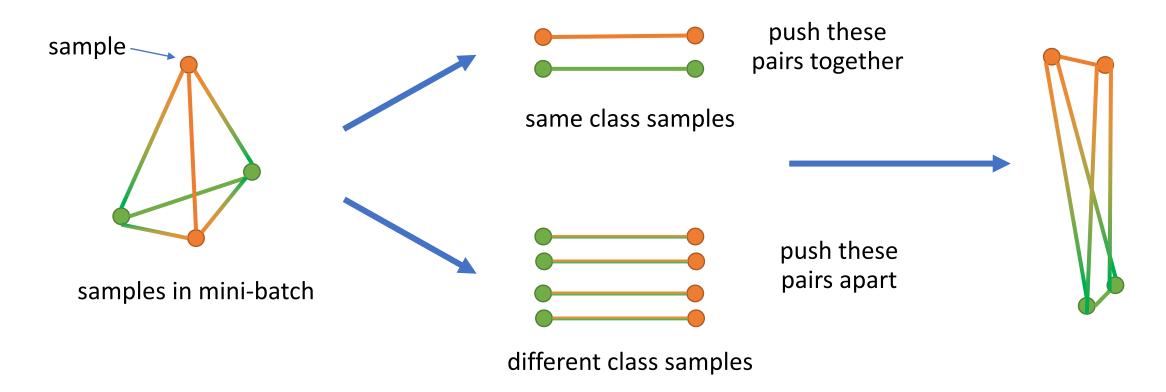
 Orthogonal Projection Loss (OPL) applies feature space constraints

 same-class feature clustering and different-class feature separation

 features learned by OPL are more discriminative and generalizable

Results across tasks

feature space



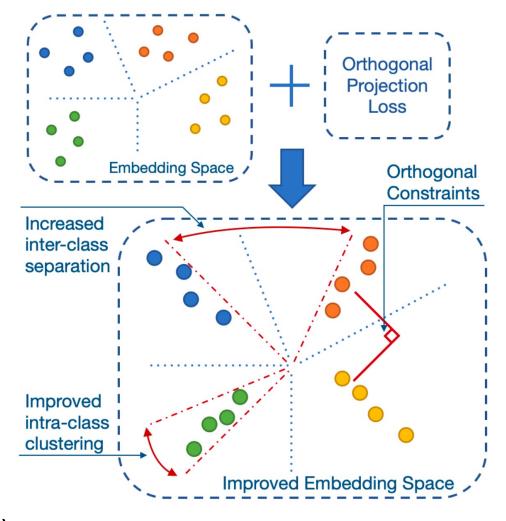
Proposed Method

$$s = \sum_{\substack{i,j \in B \\ y_i = y_j}} \langle \mathbf{f}_i, \mathbf{f}_j \rangle / \sum_{\substack{i,j \in B \\ y_i = y_j}} 1$$
$$d = \sum_{\substack{i,k \in B \\ y_i \neq y_k}} \langle \mathbf{f}_i, \mathbf{f}_k \rangle / \sum_{\substack{i,k \in B \\ y_i \neq y_k}} 1$$

$$\mathcal{L}_{ exttt{OPL}} = (1-s) + \gamma * |d|$$

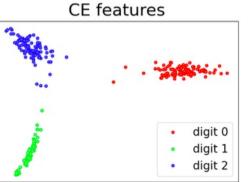
$$\mathcal{L} = \mathcal{L}_{ exttt{CE}} + \lambda \cdot \mathcal{L}_{ exttt{OPL}}$$

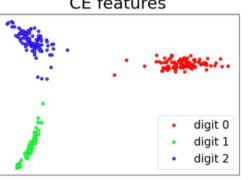
- Within each mini-batch, in feature space we make:
 - same class samples similar (s-term)
 - different class samples orthogonal (d-term)

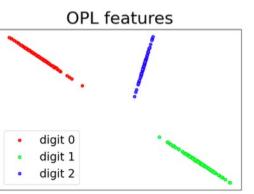


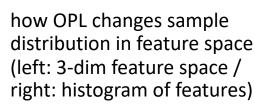
Orthogonality?

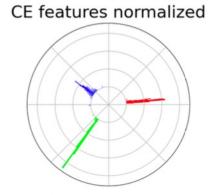
- For random mini-batch based training setting, orthogonality objective provides a definitive geometric structure independent of the batch composition
 - more stable training
 - works with small batch sizes
- Methods like optimal max-margin separation is dependent on the batch composition
- Orthogonality also avoids negative correlation constraints

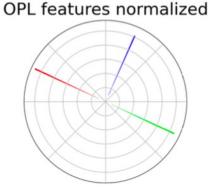




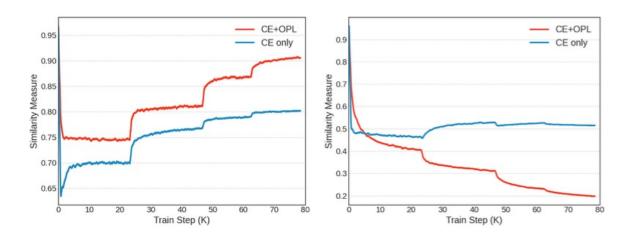








Training



- OPL has an efficient and straightforward vectorized implementation
- During training, the cosine similarity between same class samples reaches one (left) while that between different class samples reaches zero (right)

Algorithm 1 Pytorch style pseudocode for OPL

```
def forward(features, labels):
             features shaped (B, D)
 features:
             targets shaped (B, 1)
 labels:
 features = F.normalize(features, p=2, dim=1)
 # masks for same and diff class features
mask = torch.eq(labels, labels.t())
 eye = torch.eye(mask.shape[0])
mask_pos = mask.masked_fill(eye, 0)
mask neg = 1 - mask
 # s & d calculation
 dot_prod = torch.matmul(features, features.t())
 pos total = (mask pos * dot prod).sum()
neg_total = torch.abs(mask_neg * dot_prod).sum()
pos mean = pos total / (mask pos.sum() + 1e-6)
 neg_mean = neg_total / (mask_neg.sum() + 1e-6)
 # total loss
 loss = (1.0 - pos_mean) + neg_mean
 return loss
```

Detailed Evaluations

Method	ResNet-18		ResNet-50		
	top-1	top-5	top-1	top-5	
CE (Baseline)	69.91%	89.08%	76.15%	92.87%	
CE + OPL (ours)	70.27%	89.60%	76.98%	93.30%	

ImageNet: classification accuracy

Dataset	Method	Clean	Advers.
CIFAR10	Madry et al.(ICLR'18) [34]	87.14	44.04
	Madry et al. [34] + OPL	87.76	49.15
	Hendrycks et al. (PMLR'19) [19]	87.11	54.92
	Hendrycks et al. [19] + OPL	87.51	55.73
	MART [56] (ICLR'20)	84.49	54.10
	MART[56] + OPL	84.41	56.23
CIFAR100	Madry et al.(ICLR'18) [34]	60.20	20.60
	Madry et al. [34] + OPL	61.13	23.01
	Hendrycks et al.(PMLR'19) [19]	59.23	28.42
	Hendrycks et al. [19] + OPL	61.00	30.05
	MART (ICLR'20) [56]	58.90	23.40
	MART[56] + OPL	58.01	25.74

Adversarial attacks: classification accuracy

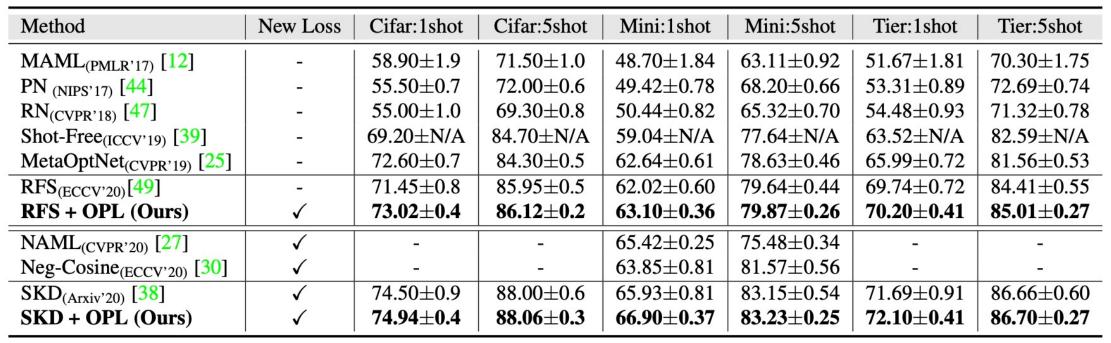
Dataset	CNAPs [40]	SUR [11]	SUR + OPL
Dataset	(NeurIPS'19)	(ECCV'20)	(Ours)
Imagenet	52.3±1.0	56.4±1.2	56.5 ± 1.1
Omniglot	$88.4{\pm}0.7$	88.5±0.8	89.8 \pm 0.7
Aircraft	80.5±0.6	79.5±0.8	$79.6 {\pm} 0.7$
Birds	$72.2 {\pm} 0.9$	76.4 ± 0.9	76.9 ± 0.7
Textures	58.3 ± 0.7	73.1±0.7	$72.7 {\pm} 0.7$
Quick Draw	$72.5{\pm}0.8$	75.7±0.7	$\textbf{75.7} {\pm} \textbf{0.7}$
Fungi	$47.4{\pm}1.0$	48.2±0.9	$50.1 {\pm} 1.0$
VGG Flower	86.0±0.5	90.6±0.5	$90.9 {\pm} 0.5$
MSCOCO	$42.6{\pm}1.1$	52.1±1.0	52.0 ± 1.0
MNIST	$92.7{\pm}0.4$	93.2±0.4	94.3 ± 0.4
CIFAR10	61.5±0.7	66.4±0.8	66.6 ± 0.7
CIFAR100	50.1±1.0	57.1±1.0	57.6 ± 1.0
Average	67.0	71.4	71.9

Few Shot Learning: classification accuracy

Method	Top-1 (%)	Top-5 (%)
ResNet50-D [18]	78.31→ 79.26	94.09→ 94.62

ImageNet: classification accuracy

Detailed Evaluations



Few Shot Learning: classification accuracy

Dataset	Method	Uniform	Class Dependent
CIFAR10	TL (NeurIPS'18) [64]	87.62%	82.28%
	TL[64] + OPL	88.45%	87.02 %
CIFAR100	TL _(NeurIPS'18) [64]	62.64%	47.66%
	TL[64] + OPL	65.62%	53.94 %

Method	Art	Cartoon	Sketch	Photo	Avg
JiGen _(CVPR'19) [3]	86.20	78.70	70.63	97.66	83.29
MASF _(NeurIPS'19) [10]	82.89	80.49	72.29	95.01	82.67
MetaReg _(NeurIPS'18) [1]	87.20	79.20	70.30	97.60	83.60
RSC _(ECCV'20) [20]	87.89	82.16	83.35	96.47*	87.47
RSC + OPL	88.28	84.64	84.17	96.83	88.48

Label Noise: classification accuracy

Domain Generalization: classification accuracy

Thank You!

Project Page: https://kahnchana.github.io/opl